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A B S T R A C T   

Understory plant communities are an integral component of deciduous forests, playing a vital role in the overall 
health of the ecosystem. However, remote sensing of understory plant communities is challenging due to the 
obstruction by the forest canopy. In this study, we proposed an automated dense Sentinel-2 time series-based 
approach for understory plant communities and created maps of four understory classes (i.e., native shrubs of 
greenbrier and mountain laurel, and invasive shrubs of barberry and the assemblage of mixed invasive) at 10 m 
resolution in Connecticut’s deciduous forests in 2020. A harmonic time series model and three years of Sentinel-2 
time series from 2019 to 2021 were used to classify understory species based on their unique, intra-annual 
phenology characteristics. The time series model coefficients captured the subtle phenology differences and 
created synthetic cloud-free images within a short temporal window in the spring prior to canopy leaf-on 
(hereafter called “observation window”). During the observation window, Sentinel-2 data penetrated the de-
ciduous overstory canopy and observed the unique trajectories of different understory species due to their 
phenology differences. We also calculated spatial texture features (i.e., mean, second moment, and contrast from 
gray level co-occurrence matrix) based on the synthetic images created within the observation window to capture 
the different conditions of leaf growth and distinct spatial patterns within deciduous forests. By using the 
spectral, temporal, and spatial features as input variables from dense Sentinel-2 data, auxiliary data (i.e., LiDAR 
and soil drainage layer), a random forest classifier, and a new strategy to iteratively select representative sample 
(namely ISRS), understory species maps were created with an overall accuracy of approximately 93%, and the 
user’s and producer’s accuracies varied from 39% to 99% for the three mapped understory species and one 
assemblage of species. The proposed method created an accurate binary map of understory presence with an 
overall accuracy of 95%, a producer’s accuracy of 84%, and a user’s accuracy of 68%. Additionally, we separated 
the invasive (i.e. barberry and mixed invasive of multi-flora rose, oriental bittersweet, honeysuckle, winged euonymus, 
and autumn olive) and native (greenbrier and mountain laurel) species with an overall accuracy of 94%. We 
estimated that the invasive species cover an area of 649.33 ± 140.59 km2, which occupied a large proportion 
(~53%) of the shrub understory in Connecticut’s deciduous forests.   

1. Introduction 

Understory, a vegetative layer of shrubs and young or small trees 
between the forest canopy and the forest floor, is crucial in the func-
tioning of Earth’s forest ecosystems. It contributes to plant species 
richness (Schafer et al., 2014), provides habitat and forage for many 
wildlife species (McDermid et al., 2009; Pisek et al., 2012), influences a 
variety of forest processes such as nutrient cycling and tree regeneration 

(Ploughe and Dukes, 2019), reflects sustaining ecosystem productivity 
and stability (Sanz et al., 2020; Sumnall et al., 2021), provides long-term 
stability in forest carbon cycling (Hubau et al., 2019), and responds to 
environmental changes (Scolastri et al., 2017). Given these crucial 
ecosystem services, it is essential to quantify the presence, spatial dis-
tribution, and species composition of understory vegetation in forested 
environments (Araujo et al., 2020; Lee et al., 2022; Utz and Fetsko, 
2020; Van Doninck et al., 2020; Zołnierz et al., 2016). 
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Understory surveys often require labor-intensive fieldwork that is 
sometimes logistically unfeasible at large spatial extents (Tuanmu et al., 
2010). Remote sensing technology has been a useful alternative tool in 
recent years. Understory mapping has been drawing increasing attention 
but still faces extreme challenges in the remote sensing community (See 
the summary of the previous studies in Table S1) because the overstory 
canopy may obscure the visibility of understory in remote sensing data 
sources. Light detection and ranging (LiDAR) can characterize the three- 
dimensional structure of forests (Scolastri et al., 2017) and is the most 
widely used dataset to map the presence of understory based on height 
information. However, this method cannot differentiate between un-
derstory species (Asner and Vitousek, 2005; Campbell et al., 2018; 
Crespo-Peremarch et al., 2018; Li et al., 2021b; Singh et al., 2015; 
Sumnall et al., 2021). 

Passive optical remote sensing data, including very high resolution 
(VHR) images from satellites and drones (Araujo et al., 2020; Li et al., 
2020; Meng et al., 2018; Oreti et al., 2020; Shouse et al., 2012; Welch 
et al., 2002), medium spatial resolution satellite images (e.g., Landsat 
and Sentinel-2)(Chastain and Townsend, 2007; Dai et al., 2020; Singh 
et al., 2018; Singh and Gray, 2020; Wang et al., 2009), and coarse spatial 
resolution satellite images (e.g., MODIS) (Tuanmu et al., 2010), also 
have demonstrated potential for understory mapping. The reflectance of 
forest stands in a multispectral optical image has two major vegetation 
components: overstory canopy and understory (Pisek et al., 2016; 
Rautiainen et al., 2009). The relative contributions of these two layers 
change with the growing season (Pisek et al., 2015; Rautiainen and 
Heiskanen, 2013). Differences in leaf phenology are key to analyzing the 
understory from optical images (Rautiainen et al., 2011; Shouse et al., 
2012; Tuanmu et al., 2010; Wilfong et al., 2009). Previous studies have 
explored the contribution of understory on leaf area index estimation 
(Chen and Cihlar, 1996; Ganguly et al., 2012; Nikopensius et al., 2015) 
and estimated their spatial distribution in the sparse boreal evergreen 
forests (Kobayashi et al., 2016; Pisek et al., 2016; Rautiainen et al., 
2011), where the presence of understory vegetation significantly influ-
enced the reflectance spectrum of forests. 

In deciduous forests, the signal of understory vegetation in satellite 
images becomes faint because of overstory canopy closure (Duncanson 
et al., 2014; Gibson et al., 2020). Some studies used multiple satellites (e. 
g., Landsat and Sentinel-2) to capture the seasonal variation and spectral 
difference between evergreen understory and deciduous canopy. Some 
evergreen understory vegetation, such as bamboo (Wang et al., 2019), 
L. sinense plant (Singh et al., 2018), and other evergreen shrubs (e.g., 

Pistacia lentiscus, Cistus ladanifer, and Retama sphaerocarpa (Fragoso- 
Campón et al., 2020)), were mapped in the previous studies. Other 
studies considered the most distinct spectral difference between decid-
uous forests with and without understory from optical satellite images 
acquired in spring green-up period (Rautiainen et al., 2011). The levels 
of light, water, and nutrients are greatest in the early spring compared to 
other seasons (Neufeld and Young, 2014), which allows understory 
vegetation to produce new leaves several weeks before deciduous trees 
in the same habitat (Fridley, 2012; McLachlan and Bazely, 2001). That 
is, understory vegetation becomes green while the deciduous tree can-
opy above is still in leaf-off condition (Hicks and Taylor, 2015). Optical 
remote sensing images can observe the greening signal of understory 
vegetation in this specific time window (hereafter called “observation 
window”). For example, Singh and Gray (2020) concluded that the use 
of selected single-date Landsat images acquired in early spring (March 
29, 2011) can produce higher overall accuracy of understory mapping 
than the use of multitemporal images. The observation window (Fig. 1), 
which varies based on the ecoregions and target vegetation species, 
provides unique opportunity to observe distinct phenology character-
istics between different understory plant communities and deciduous 
forest canopy. 

The identification of specific species, along with the location of the 
understory plant communities, is important, particularly with respect to 
vegetation composition and spread of invasive species. The character-
ization of species and their distribution benefits the understanding of 
links among global environmental change, invasive species spread over 
natives (Wilde et al., 2015), and the extinction of local understory 
species (Landuyt et al., 2018). Specifically, the spread of invasive un-
derstory species threatens biodiversity and ecosystem functioning 
(O’Loughlin et al., 2019) by modifying and changing soil conditions, 
vegetation structure, and understory microclimate (Link et al., 2018; 
Maynard-Bean and Kaye, 2019). To our knowledge, understory species 
identification is still not well addressed in the remote sensing commu-
nity and only a few studies are available (Table S1), most of which 
focused on mapping evergreen understory species in the deciduous 
forests. For example, Welch et al. (2002) used aerial images acquired in 
the March/April 1997–1998 to manually interpret the evergreen un-
derstory species. Chastain and Townsend (2007) classified two ever-
green understory species (i.e., rosebay rhododendron and mountain laurel) 
from Landsat Enhanced Thematic Mapper Plus (ETM+) images. Tuanmu 
et al. (2010) extracted understory bamboo distributions and separated 
them into two understory bamboo species (i.e., arrow and umbrella) 

Fig. 1. An example of the distinct phenology between deciduous understory and forest canopy. The “observation window” from Sentinel-2 images is between (b) 
leaf-out of understory and (c) leaf-out of the canopy. The Sentinel-2 images in the second row depict each vegetation phenology phase at a location in the University 
of Connecticut Forest (-72.25, 41.83). The spatial distribution of the deciduous understory of barberry is delineated in black polygons and were established from 
fieldwork. The Sentinel-2 image chips are composed of bands 11 (SWIR), 8 (NIR), and 4 (red) with the same stretch, and thus they are directly comparable. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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using a single elevation variable based on the prior knowledge that they 
grow at different elevations. 

Mapping deciduous understory in deciduous forests is much more 
challenging than mapping evergreen understory based on remote 
sensing data, as both the deciduous understory and overstory canopies 
could share similar phenology. Therefore, the images acquired in the 
narrow observation window become increasingly important to capture 
the early leaf-out phenology of the deciduous understory before the 
closure of the deciduous overstory. For example, Shouse et al. (2012) 
used an aerial image in early spring (late March and early April) to 
identify the canopy – bush honeysuckle, of which the spring leaf devel-
opment is typically two to three weeks earlier than that of native shrubs 
and canopy. Thus, collecting distinct growing dates and selecting 
optimal satellite images is important for mapping these target under-
story plant communities. However, it is very likely that during the 
narrow observation window, there are no clear (free of cloud, cloud 
shadow, and snow) images available, making large-scale and opera-
tional mapping of understory species difficult, particularly for deciduous 
understory in deciduous forests. 

The dense time series analysis by using Landsat and Sentinel-2 
created a new opportunity to reconstruct the temporal trajectory for 
each pixel (Yang B. et al., 2022; Zhang et al., 2021a; Zhu, 2017), which 
does not require completely clear images. The temporal trajectory de-
picts the vegetation dynamics and its phenology patterns (e.g., spring 
leaf-out, summer leaf-on, autumn leaf-senescence and winter leaf-off) 
for each pixel throughout a year. Moreover, instead of using the orig-
inal surface reflectance values for a certain date, the time series co-
efficients (Brown et al., 2020; Bullock et al., 2020; Cohen et al., 2020; 
Wang et al., 2020; Zhang et al., 2022) and other derived phenological 
metrics (Hermosilla et al., 2022; Huang et al., 2017; Pasquarella et al., 
2018; Sun et al., 2021a) can be used as the input variables to conduct the 
land cover classification and identify different vegetation species. Some 
studies used phenology characteristics derived from time series analysis 
to map the understory, demonstrating that full-year phenology is much 
more effective to extract the understory compared to simply using 
multitemporal images (Becker et al., 2013; Tuanmu et al., 2010). 
However, the potential of dense time series analysis on understory 
species identification was not well explored. 

Sentinel-2 satellite images provide a high level of detail, with a 
spatial resolution of 10 m and frequent revisit interval of five days. Some 
previous work demonstrated the advantages of using dense time series of 
Sentinel-2 to map salt marsh plant species (Sun et al., 2021a), temperate 
forest tree species (Hemmerling et al., 2021), floodplain grassland plant 
communities (Rapinel et al., 2019), and crop types (Belgiu and Csillik, 
2018). The increasing spatial and temporal resolution of Sentinel-2 
creates new possibilities for generating spatial distribution maps of 
understory plant communities. Ahl et al. (2006) suggested that satellite 
data should have a temporal resolution sufficient to capture leaf 
expansion (<1 week) for phenological studies on understory. Lee et al. 
(2022) recently also reported that the North American light window 
duration (i.e., observation window) between deciduous forest canopy 
and understory averages 11.7 ± 4.1 days. Understory plant communities 
are characterized by a wide variety of species and the high spatial res-
olution of the satellite images benefits the mapping and estimation of 
different understory classes (Su et al., 2022; Xi et al., 2022). For 
example, Shouse et al. (2012) investigated the efficacy of detecting 
understory shrubs by assessing the simulated spatial resolution of 10 m, 
15 m and 30 m, and ultimately concluded that the Landsat resolution 
(30 m) is inadequate for mapping these shrubs. 

Therefore, this study endeavors to investigate whether Sentinel-2 
time series analysis can be used to accurately classify various types of 
understory plant communities in deciduous forests. We specifically 
proposed an automated approach to address the following challenges: 
(1) is the Sentinel-2 time series model capable of detecting the distinct 
phenology between the understory (particularly deciduous understory 
species) and deciduous forest canopy; (2) how effectively can the 

various understory species be separated and also labeled as native or 
invasive species? 

2. Study area and materials 

2.1. Study area 

The study area covers the entire state of Connecticut (hereafter CT), 
with a total land area of 11,624 km2. Deciduous forest covers approxi-
mately 40% of our study area (Fig. 2), and there are large areas of shrub 
understories beneath the deciduous forests, such as the native evergreen 
mountain laurel, native woody vining greenbrier and invasive deciduous 
shrubs composed of barberry and mixed invasive (such as barberry, multi- 
flora rose, honeysuckle, oriental bittersweet, winged euonymus, and autumn 
olive in varying proportions). In CT, mountain laurel is a widely distrib-
uted and healthy native shrub which can create persistent understories 
(Brose, 2017). Unfortunately, the generation of the extremely dense 
thickets can cause a variety of forest management issues, such as hin-
drance to forest renewal and damage to overstory trees (Brose, 2016, 
2017; Royo and Carson, 2006). Greenbrier is a native woody vine in 
coastal regions that can grow up to 3-6 m when invading woodlands. In 
open areas, it spreads over shrubs and herbaceous plants, blocking out 
sunlight and killing them in the process. This leads to a decrease in plant 
species diversity in coastal grasslands and heathlands (Ohman, 2006). 
The rapid growth rate of invasive species poses an urgent threat to 
forests, as they can outcompete native plants and quickly become the 
dominant species in understory ecosystems (Link et al., 2018; Utz and 
Fetsko, 2020). In CT, the rapid expansion of invasive understory species, 
particularly barberry, has resulted in their presence in nearly every 
county (EDDMapS, 2023; Kartesz, 2015). This has caused a decrease in 
the abundance of desirable native species, such as wildflowers and 
grasses (Linske et al., 2018; Ward et al., 2009; Williams and Ward, 
2010). As such, it is essential to keep track of the spread of invasive 
species and the presence of native species in CT. 

In this study, we aimed to detect and identify these four understory 
plant communities, hereafter called the “target understory” (Fig. 3 (a- 
d)). Notably, in addition to the bare forest floor beneath the deciduous 
forest canopy (second row in Fig. 3 (e-i)), a variety of other understory 
types, such as deciduous and coniferous tree saplings, non-target native 
shrub (e.g., sweet pepperbush, highbush blueberry, lowbush blueberry, and 
northern spicebush) and herbaceous ground covers (e.g., skunk cabbage, 
moss, and fern) may also exist. We combined them into a single category 
for this study – “others” in deciduous forests. 

2.2. Reference data 

Our study aims to map the understory species beneath deciduous 
forests. First, to define the potential regions of deciduous forests and 
limit the spatial distribution of understory, we collected the training 
sample of deciduous forests and non-deciduous forests based on manual 
interpretation from the VHR image and National Land Cover Database 
(NLCD) map (Dewitz and Survey, 2021). Second, because it is hard to 
reliably interpret understory vegetation directly from remote sensing 
images, we collected the reference data for understory mapping based 
on field visits. We collected high-quality training data for target un-
derstory plant communities and “others” in deciduous forests to identify 
understory species. Finally, to verify the accuracy of the predicted un-
derstory species classification map (Section 4.2), we used stratified 
random sampling (Olofsson et al., 2014) to create validation sample and 
interpreted their class through in-situ visits and on-screen work. 

2.2.1. Training data for deciduous forest mapping 
To generate the deciduous forest map at a spatial resolution of 10 m, 

we collected the training data of deciduous forests and non-deciduous 
forests from manual interpretation of the VHR image and NLCD maps 
(See details in Supplementary S1.1). We interpreted 220 deciduous forest 
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Fig. 2. Connecticut (CT) State overlaid with deciduous forests (black colour) map at 10 m resolution (generated in Section 3.2). The training data for four kinds of 
target understory (including barberry, greenbrier, mixed invasive, and mountain laurel) and “others” in deciduous forests were collected in November 2020 and April 
2021. The white crosses are the independent validation sample that were collected in June 2021 based on the stratified random sampling strategy. 

Fig. 3. Photos of target shrub understory (barberry, greenbrier, mixed invasive, and mountain laurel) and “others” in deciduous forests (with different ground conditions 
beneath the forest canopy) taken in November 2020 and April 2021 in deciduous forests of Connecticut (CT). 
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polygons, 200 coniferous forest polygons and 198 mixed forest polygons 
based on human interpretation on the reference of VHR NAIP image. We 
also collected training data for non-forest classes (i.e., water, developed, 
barren, shrubland, herbaceous, planted/cultivated, wetlands) based on 
random sampling in the NLCD 2019 map. 

2.2.2. In-field training data collection for understory mapping 
We collected training data (Table 1) in deciduous forests with and 

without target understory over multiple field visits carried out in 
November 2020 and April 2021. We collected training data for four 
target understory plant communities in high density regions, where the 
target understory communities comprised at least 75% cover of a 
Sentinel-2 pixel. The mixed invasive understory type included a mix of 
the deciduous species of barberry, multi-flora rose, honeysuckle, oriental 
bittersweet, winged euonymus, and autumn olive with varying proportions, 
where the proportion of barberry was <50%. A small proportion of 
greenbrier could be included in mixed invasive because it frequently co- 
occurred with invasive species. Additionally, we collected data for 
“others” in deciduous forests without the target understory plant com-
munities, which includes different deciduous forests ground conditions 
such as bare land, deciduous tree saplings, non-target shrub understory 
(mainly consisting of native species such as sweet pepperbush, highbush 
blueberry, lowbush blueberry, and northern spicebush), sparse young co-
nifers, and herbaceous vegetation (such as skunk cabbage, moss, and 
fern). Training data (polygons) were collected in the field using the 
Collector for ArcGIS on a smartphone paired to a GPS receiver or the 
smartphone’s internal GPS receiver. Training data polygons were 
collected while the GPS location was reported with a root mean square 
error (RSME) of <5 m. In total, we collected 587 polygonal objects 
comprising 36,128 Sentinel-2 pixels at 10 m resolution. 

2.2.3. Validation sample collection 
We followed the “good practice” recommendations (Olofsson et al., 

2014) and used the stratified random sampling design to generate the 
location of validation sample for accuracy assessment of the predicted 
understory maps. The strata were determined by the understory species 
map (four understory classes and “others” which included “others” in 
deciduous forests, non-deciduous forests, and non-forest classes). The 
number of collected validation pixels was 105 (barberry), 69 (mixed 
invasive), 82 (greenbrier), 124 (mountain laurel), and 295 (“others”), 
respectively. Finally, the accuracy assessment and area estimation of the 
understory vegetation map was conducted using 675 validation sample, 
of which 426 were collected from field visits at locations that were 
publicly accessible in June 2021 (mainly for deciduous forest with and 
without understory) and 249 were derived from aerial photo in-
terpretations (mainly for non-deciduous forest sample). In the validation 
process, we defined a pixel as understory existence if the density of the 
target species is larger than 10% cover in ground. If multiple target 
understory communities were present in the validation plot, we defined 
the pixel as mixed invasive only if both barberry and greenbrier comprised 
<50% of the proportion. We defined the pixel as barberry or greenbrier if 
one of them comprised >50% of the region even though some other 
target understory plant communities existed in the plot. 

2.3. Sentinel-2 data 

The Sentinel-2 mission is currently composed of a two-satellite sys-
tem, Sentinel-2A and Sentinel-2B, which were launched on 23 June 
2015 and 07 March 2017 respectively, allowing for a high revisit fre-
quency of five days at a high spatial resolution of up to 10 m (Drusch 
et al., 2012; Yang et al., 2018). In this study, we used six broad bands (i. 
e., visible (VIS) and near-infrared (NIR) bands at 10 m and two short-
wave infrared (SWIR) bands at 10 m) and four narrow bands (three red 
edge bands and narrow NIR at 20 m) (See Table S2). The two SWIR, 
three eed edge and narrow NIR bands with a spatial resolution of 20 m 
were resized to 10 m by using cubic interpolation to maintain the same 
spatial resolution as the VIS and NIR bands. 

Five popular vegetation indices (See Table S2), including normalized 
difference vegetation index (NDVI), enhanced vegetation index (EVI), 
soil adjusted vegetation index (SAVI), normalized burn ratio (NBR), and 
red edge normalized difference vegetation index (RENDVI) were 
included as additional variables to highlight the differences among 

Table 1 
Definition of target understory and “others” in deciduous forests, as well as their 
in-field training data collected in this study.  

Category Number of pixels 
(Number of 
Polygonal 
objects) 

Description 

Target 
understory 
plant 
communities 

Mountain 
laurel 

14,199 (75) Mountain laurel is an 
evergreen shrub species, 
native to CT that holds its 
leaves year-round and 
grows 3-9 m tall. 

Barberry 4830 (87) Barberry is a deciduous 
invasive shrub that leaves 
out 2-3 weeks before 
deciduous trees and grows 
up to 2.5 m. Barberry 
forms a monoculture that 
negatively impacts seed 
germination of native 
plant species and provides 
microclimate conditions 
amenable to black-legged 
ticks. 

Greenbrier 987 (65) Greenbrier is a native, 
deciduous to semi- 
evergreen woody vining 
species and can grow up to 
6 m by climbing objects 
and vegetation. It has a 
green stem year-round 
and provides forage for 
wildlife. 

Mixed 
invasive 

2406 (69) Mixed invasive, used in this 
study to describe a plant 
community including 
barberry, multi-flora rose, 
oriental bittersweet, 
honeysuckle, winged 
euonymus, or autumn olive 
in differing proportions. 
Greenbrier sometimes co- 
occurs with invasive 
species and is included 
here. These species can be 
indicative of past land use 
and can negatively impact 
seed germination while 
also providing cover for 
wildlife species 

“Others” in 
deciduous 
forests 

Non-target 
shrub 

1751 (45) Deciduous forests without 
target understory. Shown 
in the second row of Fig. 3 
(e-i), different kinds of 
conditions may exist 
beneath the canopies, 
including the bare land, 
deciduous tree saplings, 
non-target shrub 
understory (mainly 
consisting of native 
understory species such as 
sweet pepperbush, highbush 
blueberry, lowbush 
blueberry, and northern 
spicebush), sparse young 
conifers, and herbaceous 
(such as skunk cabbage, 
moss, and fern) 

Sparse 
coniferous 

1288 (13) 

Tree sapling 1973 (37) 
Herbaceous 1194 (38) 
Clear bare 
land 

7500 (158)  
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different understory species in addition to Sentinel-2 surface reflectance 
bands. 

We downloaded all the available Sentinel-2 Level-1C product, Top- 
Of-Atmosphere (TOA) reflectance, with cloud cover <100% between 
2019 and 2021 in four Sentinel-2 tiles (T18TXL, T18TXM, T18TYL and 
T18TYM) from USGS Earth Explorer (https://earthexplorer.usgs.gov). 
Among the four tiles that cover CT, there are three Sentinel-2 orbits (i.e., 
R011, R054 and R111), but we only used a total of 745 Sentinel-2 im-
ages (cloud cover <100%) acquired from the single orbit (R011). This 
single orbit processing was used to remove the partial coverage images 
acquired by adjacent orbit paths (R054 and R111), which can lead to 
noticeable artifacts between orbit overlap and nonoverlap areas because 
of unbalanced observation densities (see details in Supplementary S6). 
For each Sentinel-2 image, the TOA data were converted to surface 
reflectance by using the version 2.8 Sen2Cor atmospheric correction 
module, and cloud, cloud shadow, and snow were masked by using 
Fmask 4.6 algorithm (Qiu et al., 2019). 

Although Sentinel-2 has a repeat time of approximately five days, the 
temporal density of the clear observations is reduced substantially 
owing to cloud and cloud shadow. In this study, we assumed that the 
understory and deciduous forests in CT remain unchanged between 
2019 and 2021 (with 2020 being the epoch year) and merged the whole 

Sentinel-2 clear observations in these three years to generate the three- 
fold dense Sentinel-2 observations in a single calendar year. 

2.4. Auxiliary data 

2.4.1. Soil drainage layer 
A soil drainage layer was combined in the pre-definition of the po-

tential layer of the understory distribution map in Section 3.2. Eight 
levels of drainage class of soils are defined by the USDA Natural Re-
sources Conservation Service Soil Survey Geographic (SSURGO) data-
base (https://websoilsurvey.sc.egov.usda.gov/; last access on 01/24/ 
2023). The very poorly drained soil class is mostly wetland soils that 
have free water present at or very near the ground surface during much 
of the growing season. In these conditions, wetland plant communities 
including herbaceous species, such as skunk cabbage and moss, and shrub 
species, such as highbush blueberry and sweet pepperbush, would be the 
popular understory plants beneath the canopy (Kiviat, 2023; Paolucci 
and Stolt, 2018; Poindexter and Thompson, 2009). These types of 
vegetation could be misclassified as barberry and mixed invasive due to a 
similar early-spring leaf out phenology. Barberry and the other invasive 
plants included in the mixed invasive plant community, such as multi- 
flora rose, honeysuckle, bittersweet, and euonymus, are not suited to 

Fig. 4. Workflow of the understory species mapping approach with iteratively select representative sample (ISRS).  
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establish and persist in standing water or in very poorly drained soils. 
Thus, we exclude the very poorly drained soils that could not support the 
growth of the target understory plant communities. 

2.4.2. LiDAR 
We generated a canopy height model by subtracting the bare earth 

Digital Elevation Models (DEM) from the height of LiDAR cloud points. 
The LiDAR data were downloaded from Connecticut Environmental 
Conditions Online (CT ECO), which were collected by the Leica ALS70 
sensor onboard airplane between March 11, 2016 and April 16, 2016 
(http://www.cteco.uconn.edu/data/lidar/info_lidar.htm; last access on 
01/24/2023). CT ECO also provides the bare earth DEM data with 1-m 
resolution based on LiDAR data. The canopy height information is 
incorporated to define the regions of deciduous forests. 

3. Methodology 

The methods consist of five distinct steps described in the following 
sections (Fig. 4): estimating the harmonic time series model and gen-
eration of the spectral, temporal and spatial variables in Section 3.1, 
definition of the potential distribution regions of the understory plant 
communities in deciduous forests in Section 3.2, building of an opti-
mized random forest classifier by Iteratively Selecting Representative 
Sample (namely ISRS) in Section 3.3, removal of the isolated pixels in 
the post-processing step of Section 3.4, and accuracy assessment and 
area estimation of the spatial distribution of the understory plant com-
munities in CT in Section 3.5. 

3.1. Input variables 

Unlike most of the understory mapping approaches that used satel-
lite images acquired at selected dates to highlight the reflectance dif-
ference between the understory and overstory, our algorithm used all 
available Sentinel-2 observations to build harmonic time series models. 
The input variables include the spectral and temporal features derived 
from the harmonic time series model and spatial information measured 
by the texture feature of synthetic images in the observation window. 
The spectral bands, including blue, green, red and NIR broadbands, two 
SWIR broadbands and four red edge narrowbands, and five vegetation 
indices (i.e., NDVI, EVI, SAVI, NBR, and RENDVI) were considered. For 
each spectral band or index, a harmonic model is created based on the 
time series of Sentinel-2 data, and its coefficients can represent the 
spectral and temporal features. Based on the harmonic model, cloud-free 
synthetic Sentinel-2 images in the observation window can be predicted 

and used to calculate texture metrics (Table 2). 

3.1.1. Spectral and temporal features derived from time series model 
To extract the spectral and temporal features, a harmonic time series 

model (Eq. 1) with Fourier terms was estimated based on all clear 
Sentinel-2 observations for each pixel and each spectral band or index 
(Fig. 5). The harmonic model has often been used to process time series 
of satellite data (Verbesselt et al., 2012; Zhu et al., 2015, 2020) for 
capturing the intra-annual variability of vegetation (Zhang et al., 
2021a). The harmonic time series model was controlled by the number 
of Fourier terms (i.e., the number of sine and cosine pairs), and the short- 
term dynamics can be handled by increasing Fourier terms (de Livera 
et al., 2011; Hyndman and Athanasopoulos, 2018a). In this study, we 
used a harmonic time series model with eight pairs of Fourier terms (Eq. 
1) to capture the phenology of the understory, especially within the 
observation window, and different understory species presented distinct 
signals. The complex harmonic time series models with a large number 
of Fourier terms would incur overfitting problems. We estimated the 
time series models using the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression method (Tibshirani, 2011). The LASSO 
regression method minimizes the residual sum of squared errors with a 
bound on the sum of the absolute values of the coefficients. In this way, 
some of the model coefficients will be exactly zero and overfitting will be 
greatly constrained (Yang X. et al., 2022; Zhu et al., 2020). 

For each spectral band and index, there were 18 potential variables, 
with 17 of them from the time series model coefficients to indicate the 
spectral and temporal characteristics and one of them from Root Mean 
Square Error (RMSE). The first variable (a0) represents the overall value 
of the time series and indicates the mean value of the entire year. The 
eight pairs of harmonic variables provide temporal information about 
intra-annual seasonal patterns, such as the annual (a1 and b1), bi-annual 
(a2 and b2), tri-annual (a3 and b3) and bi-monthly (a6 and b6) changes. 
The additional variable (RMSE) was calculated during model regression 
and measures how well the time series model fits the data. 

ρ̂i,x = a0,i +
∑n

k=1

{

ak,icos
(

2kπ
T

x
)

+ bk,isin
(

2kπ
T

x
) }

(1)  

where, 
x is day of year (DOY); 
T is the number of days per year (T = 365.25); 
k is the temporal frequency of the harmonic component on an annual 

basis (k = 1, 2, …, n); 
n is the number of pairs of Fourier terms (n = 8), and each pair of 

terms designates the number of complete cycles completed by a wave 
over the calendar year (e.g., the eighth pair of terms completes eight 
cycles) (Jakubauskas et al., 2001); 

a0,i is the coefficient for overall value; (ak,i, bk,i) are coefficients for 
intra-annual seasonality; 

i indicates the variables, which can be the Sentinel-2 spectral bands 
or indices; 

ρ̂i,x is predicted reflectance or index value for the ith variable at x 
DOY date from model prediction. 

Fig. 5 illustrates the harmonic time series models for different un-
derstory species and “others” in deciduous forests (See Fig. S4 with 
estimated coefficient values). Although the shapes of the curves are 
similar within the leaf-on season of deciduous forests, different char-
acteristics of understory coverage show somewhat different shapes in 
the leaf-off season, especially during the observation window. Take 
barberry and “others” in deciduous forests (Fig. 5(a)) as examples, 
barberry becomes greener earlier than the “others” in deciduous forests 
in the observation window. By using the harmonic time series model, 
synthetic images can be generated for any DOYs (Zhu et al., 2015). Fig. 6 
shows an example of deciduous forests that are partially covered with 
evergreen mountain laurel and deciduous barberry. The location with 
mountain laurel remains green over the entire year. Barberry has leaf-off 

Table 2 
A total of 360 potential input variables were extracted from the spectral, tem-
poral, and spatial data dimensions for ten surface reflectance bands and five 
vegetation indices of Sentinel-2 data. Please refer to Eq. (1) for specific variable 
names.  

Dimension Source Variables Number Descriptions 

Spectral/ 
Temporal 

Time series model of 
all observations 

a0 15 Overall surface 
reflectance 

ak,i and 
bk,i 

240 Intra-annual 
phenology 

RMSE 15 Residuals 
omitted by that 
model fitting 

Spatial Synthetic images in 
observation window, 
100th and 120th 
DOYs 

Mean 30 Local mean of the 
gray levels in the 
kernel 

Contrast 30 Variability or 
lack of similarity 
in the kernel 

Second 
moment 

30 Degree of pixel 
pair repetition in 
the kernel  
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Fig. 5. Time series models are estimated based on Sentinel-2 clear observations collected between 2019 and 2021. (a) shows the clear observations and estimated 
harmonic models for deciduous forests with barberry and “others” in deciduous forest without target understory plants, respectively. (b) shows the different temporal 
trajectories for the target understory classes and “others” in deciduous forests pixels. The pink rectangular regions indicate the observation window in the spring prior 
to canopy leaf-on. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Synthetic Sentinel-2 images (ρ̂i,x in Eq. 1) created at different DOYs in the observation window. (e) shows the very high resolution (VHR) image and in-field 
training data collected for evergreen mountain laurel in cross-hatch and deciduous barberry in diagonal stripes. The synthetic image chips (a-d) are composed of 
Sentinel-2 SWIR1, NIR, and red bands with the same stretch, and thus they are directly comparable. Healthy vegetation is bright green, and soils appear pink. In these 
synthetic images, the green pixels indicate the greening of the vegetation. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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seasons similar to “others” in deciduous forests (Fig. 6 (a)) but produces 
leaves earlier than the overstory canopy (Fig. 6 (b-d)). The different 
phenology is the main basis for mapping the distribution of understory 
and identifying their species. 

3.1.2. Spatial features derived from synthetic images 
The time series coefficients captured the spectral and temporal in-

formation at pixel-level yet ignored the spatial information among 
pixels. Thus, we computed the widely used texture measures, derived 
from the gray level co-occurrence matrix (GLCM) (Dinstein et al., 1973), 
based on synthetic Sentinel-2 images (Fig. 6) created in the observation 
window. The synthetic Sentinel-2 images were created based on the 
surface reflectance estimated from the time series models (ρ̂ in Eq. 1) for 
each pixel and each spectral band (Zhu et al., 2015). We used these 
synthetic images to calculate the texture features because they are free 
of clouds, cloud shadow, and snow for any given DOY. The synthetic 
Sentinel-2 images within the observation window (e.g., DOYs of 100 and 
120) were employed, because the understory started to produce new 
leaves while the overstory trees remained dormant in the study area. 

The GLCM is created by calculating how often pairs of pixels with 
specific values in a specified spatial relationship occur in an image. 
GLCM texture has proved useful in many forest classification studies 
(Baron and Hill, 2020; Chrysafis et al., 2019; Ferreira et al., 2019). 
Understory patterns beneath the canopy can lead to different vegetation 
structures and distinctive textures. Statistical measures such as mean, 
variance, homogeneity, contrast, dissimilarity, entropy, second 
moment, and correlation can be computed from a GLCM (Clausi, 2002). 
To reduce the number of candidate variables, we selected three GLCM 
features with a small correlation, namely, mean, contrast, and second 
moment (Hall-Beyer, 2017; Murray et al., 2010). The mean feature re-
fers to the local mean of the gray levels within the kernel. Contrast is a 
measure of variability and can be interpreted as a measure of lack of 
local similarity. The second moment, also known as uniformity or en-
ergy, measures the degree of pixel pair repetition in the kernel. These 
three variables are calculated with a window size of 9 × 9 pixels over 
four directions (0◦, 45◦, 90◦, and 135◦) (Zhu et al., 2012b). The average 
value of these four directions is then calculated to ensure the omnidi-
rectional characteristics of selected texture metrics (Baron and Hill, 
2020). 

3.2. Creation of deciduous forest map 

Our goal is to identify the distribution and species of the understory 
plant communities in deciduous forests. Therefore, we pre-defined a 
potential layer to limit the study area, which supports the growth of 
target understory vegetation in mature deciduous forests. This was 
necessary because other classes such as shrubland, herbaceous, and 
mixed forests could have a similar spectral signature as the target un-
derstory (Rittenhouse et al., 2022). We generated a new deciduous forest 
map (see Supplementary S3) at 10 m resolution by using a random forest 
classifier with variables derived from a harmonic time series model with 
three terms (n = 3 in Eq. 1). The classes include the first-level non-forest 
classes (i.e., water, developed, barren, shrubland, herbaceous, planted/ 
cultivated, wetlands) and second-level subclasses of forests (deciduous, 
coniferous and mixed forests), following the NLCD 2019 map. The 
training data for the non-forest classes are randomly generated from the 
NLCD 2019 map, and subclasses of forests are manually interpreted as 
described in Section 2.2.1. Compared to the deciduous forest map in 
NLCD 2019, the updated map had a clear boundary between deciduous 
forests and non-deciduous forests owing to the higher spatial resolution 
of 10 m and reduced the omission errors. These improvements are 
important to ensure the coverage of the potential domain for understory 
classification. In addition, to reduce the commission error of shrubs and 
wetlands misclassified as the understory of the deciduous forests map-
ping (see Supplementary S3.5), we excluded these regions in the potential 
layer where the forest canopy height is not higher than 10 m based on 

the LiDAR-based canopy height dataset (Bouvier et al., 2015; Reinmann 
and Hutyra, 2017; Senécal et al., 2018) and the very poorly drained soils 
cannot support the growth of the target understory plant communities 
(Kiviat, 2023; Paolucci and Stolt, 2018; Poindexter and Thompson, 
2009). 

3.3. Random forest classifier with representative sample 

The random forest classifier was used to perform understory classi-
fication because of its relatively high accuracy and computational effi-
ciency (Breiman, 2001). The random forest classifier is an ensemble 
supervised learning method, in which many classification trees are 
constructed, and a majority voting rule is applied to determine the final 
classification type. We used the default number of trees (500) to build 
the random forest classifier. 

Training sample selection is usually one of the most critical elements 
for supervised classification (Heydari and Mountrakis, 2018; Li et al., 
2021a; Zhu et al., 2016). When training a random forest classifier, it is 
important to select representative training sample that accurately reflect 
the target classes (Belgiu and Drăgu, 2016; Ishida, 2019; Li et al., 2017). 
For example, it is necessary to have training data that is representative of 
the different species compositions and cover densities of the mixed in-
vasives to achieve optimal results with a random forest model. This is 
because the model will learn to recognize patterns from the data it is 
trained on; thus, the more representative the training data is, the more 
accurately the model will be able to generalize and predict unseen data. 

In this study, we proposed an automated way to iteratively select 
representative sample (called ISRS) to build a robust random forest 
classification model (Fig. 7). We collected a large amount of high-quality 
training data in fieldwork and took them as the training sample pool 
(Fig. 2 and Table 1). ISRS seeks to ensure that the training data contains 
representative sample of each understory species, promoting diversity 
and capturing the full range of patterns and characteristics while 
avoiding domination by any particular conditions. At first, we randomly 
selected an equal number of training sample per class to train an initial 
random forest classifier. We then applied the classifier to generate pre-
dicted classes for the training sample pool and found the misclassified 
sample (hereafter referred to as “disagreement sample”). These 
disagreement sample likely originate from patterns ignored in the 
currently selected sample. It is thus essential to add more “representa-
tive sample” from the disagreement sample that are typically located 
where the classified labels diverge from the training data labels (Zhou 
and Li, 2010). We updated the training data with an iterative replace-
ment procedure until the improvement plateaus. Every iteration 
replaced a small proportion (5%) of the previously selected training data 
with the disagreement sample (an equal number of disagreement sample 
for each class). This small proportion was adopted to ensure a gradual 
updating process and avoid excessively different maps by replacing a 
large proportion of the sample. The inclusion of the disagreement 
sample gradually corrects the issues in the previous run (as the 
disagreement pixels may differ in each run). After several iterations, 
further improvements by ISRS become limited and the selected set of 
training data should have accurately identified the whole patterns in the 
large training sample pool. 

3.4. Removal of the isolated pixels 

The proposed time series analysis approach is based on individual 
pixels and will have salt-and-pepper noise in the classification map 
(Pasquarella et al., 2018; Yang et al., 2020). Based on a sensitivity 
analysis, we used a two-step eight-connected sieving filter to eliminate 
these isolated pixels in the understory classification map (Senf and Seidl, 
2021; Ye et al., 2021). The first sieving filter was applied to the binary 
understory presence map (i.e., presence or absence of any target un-
derstory plant communities). We removed the small understory objects 
smaller than 10 Sentinel-2 pixels (minimum mapping unit (MMU) of 

X. Yang et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 293 (2023) 113601

10

1000 m2). Then, taking this noise-removed map as the mask, we 
employed the second sieving filter on the multi-class understory species 
map (i.e., four target understory classes) to modify small objects smaller 
than five pixels. We extracted the boundary pixel across the small object, 
and then counted the most frequent classes among the boundary pixels 
and defined the small object to this class. The two-step process was 
designed to maintain the patches larger than the MMU that consisted of 
different understory species, in which the area of the single understory 
class was smaller than the MMU. 

3.5. Accuracy assessment and area estimation 

The understory species map derived from satellite images contained 
prediction errors and biases. Thus, the estimation of areas was better 
accomplished by applying an unbiased estimator to adjust area for map 
error and providing confidence intervals for the error-adjusted area es-
timates (Bullock et al., 2020; Olofsson et al., 2013). A confusion matrix, 
based on the stratified validation sample in Section 2.2.3, can be 
calculated including the user’s accuracy, producer’s accuracy, and 
overall accuracy. Then, we followed the “good practice” recommenda-
tions presented in (Olofsson et al., 2013) to calculate a post-stratified 
estimator to translate the matrix into terms of unbiased accuracies and 
area proportions. The uncertainty of the area and accuracy estimator 
was quantified by a 95% confidence interval (CI). Our aim was to map 
the spatial distribution of four kinds of understory plant communities. 
Our final maps combine the “others” in deciduous forest and regions 
outside of the potential layer into the background class of “others”. That 
is, we conducted the accuracy assessment and area estimation with five 
classes, including the four target understory plant communities and 
“others”. 

4. Results 

4.1. Random Forest classifier calibration 

Within the potential layer, we built a random forest classifier by 
using the proposed ISRS solution. Five classes (Fig. 3 (e-i) and Table 1), 
including the four target understory classes and “others” in deciduous 
forests were considered and an equal number of training sample were 
used to train the random forest classification model. That is, each target 
understory plant community and “others” in deciduous forests accoun-
ted for one-fifth of the total training data. The stratum of “others” in 
deciduous forests consisted of five major subclasses (i.e., deciduous 
sapling, sparse coniferous sapling, non-target native shrub understory, 
herbaceous ground covers and bare floor). We used an equal number of 
training data for each subclass to avoid certain ground conditions 

dominating the variables of the category of “others” in deciduous 
forests. 

The different number of representative training data and input var-
iables can lead to random forest classification models with different 
accuracies. We used the in-field training data to select different numbers 
of representative training sample and input variables for creating the 
optimal random forest classification model by an object-level repeated 
validation. Each time, a total of 80% of the ground reference data were 
randomly selected to train the classifier, and the remaining 20% were 
used to evaluate map accuracy, and this process was repeated 50 times 
to estimate the overall performance. To mitigate the prevalence of 
spatial autocorrelation within the calibration process, a training data 
splitting design at the polygonal object level was used to ensure spatial 
independence between the training and test sets during the calibration 
process (Karasiak et al., 2022; Roberts et al., 2017). That is, the polyg-
onal sample were initially randomly divided into two sets 80% of the 
polygons for training and the remaining 20% of the polygons for 
testing). Then a specified number of the training sample were randomly 
chosen from the training polygons, and the whole sample in the test 
polygons was used to calculate the accuracy. 

To build an optimal random forest classification model based on the 
training data and input variables, we calibrated the classification algo-
rithm by optimizing the overall accuracy and minimum accuracy. The 
minimum accuracy, the minimum value of the user’s and producer’s 
accuracies across all classes, was used to measure the maximum possible 
per-class commission and omission error (Zhu et al., 2016). 

4.1.1. Influence of sample size and iterative times 
We calibrated the representative training sample size and iterative 

times to build the random forest classifier with the proposed ISRS so-
lution. Fig. 8 shows the overall accuracies and minimum accuracies in 
each iteration. Both the overall accuracy and minimum accuracy 
increased substantially at the early iteration stage (<5 iterations), 
regardless of the total number of training sample used. Both the overall 
and minimum accuracies plateaued after approximately ten iterations 
and when >8000 training sample were used. Therefore, we selected a 
total of 8000 representative sample with ten iterations, which improved 
the overall accuracy by 1% and minimum accuracy by 10%, compared 
to the use of all training data (~30,000 sample). That is, a more concise 
random forest classification model was generated with a small number 
of more representative training sample and achieved better results than 
using all the available training data. 

4.1.2. Influence of input variables 
We calculated the time series coefficients and texture metrics of 

Sentinel-2 bands and spectral indices (Table 2) and compared whether 

Fig. 7. Illustration of the process for automated selection of representative training sample by iteratively updating the selected sample with disagreement sample.  
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some of them may be redundant and have limited impacts on the clas-
sification results (Pal, 2006; Zhu et al., 2012a, 2012b). To select useful 
input variables for classification, we designed several scenarios by 
considering with/without indices, with/without textures and with/ 
without narrowband (Table 3) and compared their accuracies by using 
8000 representative training sample (Fig. 9). We used synthetic 
Sentinel-2 images on DOYs of 100 and 120 (see details in Supplementary 
S7) to calculate the GLCM metrics. Two DOYs in the observation window 
are to add information on different phases of spring greening for de-
ciduous understory species. 

The use of indices (Scenario 3) improved both the overall accuracy 
and minimum accuracy dramatically. The three scenarios excluding 
indices (Scenario 1, 2, 5) achieved low accuracies compared to the 
others using indices. The texture information improved the accuracy 
further, such as the comparison of Scenario 1 versus 5, Scenario 3 versus 
6 and Scenario 4 versus 7. The combined use of indices and their texture 
metrics (Scenario 6) achieved the best overall accuracy even without 
using the spectral bands, but the inclusion of broadbands (Scenario 7) 
improved the minimum accuracy by 4%. Thus, our model employed 
broadband, spectral indices and their texture information as the input 
variables (a total of 264 variables) to classify the understory species, but 
excluded the narrowband owing to the saturated accuracy (Scenario 8). 

We employed 264 input variables (Scenario 7 in Table 3) derived 
from spectral, temporal and spatial domains to build the random forest 
classifier and classify the understory species. Random forest classifier 
can effectively measure the variable importance by considering not only 

the influence of each predictor variable separately but also the multi-
variate interactions with other predictor variables (Archer and Kimes, 
2008; Breiman, 2001; Chan and Paelinckx, 2008; Gislason et al., 2006; 
Zhu et al., 2016). Variable importance shows how much the prediction 
accuracy would drop if a given metric was excluded (Belgiu and Csillik, 
2018). According to the importance estimation of the random forest 
classification model, the top 64 variables were derived from a variety of 
spectral bands/indices and different temporal and spatial features (See 
Supplementary S5), of which 49 variables were time series model co-
efficients and RMSE from model fits, and 15 variables were GLCM 
metrics from synthetic images. 

A large proportion of the variables (51 variables) were from spectral 
indices. The use of five spectral indices as input variables can achieve a 
5% increase of overall accuracy and 8% increase of minimum accuracy 
compared to the use of surface reflectance bands (Fig. 9). RENDVI was 
the most important variable, which provided five of the top 10 variables 
(a0, a1, b2, and GLCM mean values in both 100th and 120th DOYs). One 
reason lies in the exclusion of the red edge bands and increased inde-
pendence of RENDVI. For broadband surface reflectance bands, infrared 
bands (13 variables) provided more useful information than VIS bands 
(not included in the top 64 variables). The inclusion of the spatial 
texture features would lead to the increase of overall accuracy by 1% 
and minimum accuracy by 5% (Fig. 9). 

4.1.3. Influence of harmonic terms 
It is important to select the appropriate number of Fourier terms to 

Fig. 8. Sensitivity analyses of selecting representative training sample by overall accuracy and minimum accuracy. The black dotted line indicates the accuracy when 
using all the reference training data (~30,000 sample). A total of 8000 representative training sample and ten iterations were determined as the optimal strategy for 
this iterative sample selection process. 

Table 3 
Classification scenarios for selecting different groups of input variables. Texture features were calculated based on the synthetic Sentinel-2 image created on 100th and 
120th DOY. * indicates the optimal scenario.  

Scenarios Broadband Narrowband Indices Textures Number of input variables 

Scenario-1 Yes No No No 108 
Scenario-2 Yes Yes No No 180 
Scenario-3 No No Yes No 90 
Scenario-4 Yes No Yes No 198 
Scenario-5 Yes No No Yes 144 
Scenario-6 No No Yes Yes 120 
Scenario-7* Yes No Yes Yes 264 
Scenario-8 Yes Yes Yes Yes 360  
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Fig. 9. Comparisons of different scenarios with/without indices, with/without textures, and with/without narrowband. Notably, the accuracy was evaluated based 
on 8000 representative training sample. See Table 5 for a description of each scenario. 

Fig. 10. Time series models (Eq. 1) and performances by using different numbers of Fourier terms (varying from 1 to 8). Notably, the accuracies were calculated for 
the Scenario-4 (Table 3) with broadbands and indices. 
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develop the harmonic model and capture the seasonality (Hyndman and 
Athanasopoulos, 2018b). We varied the number of Fourier terms (n) 
from 1 to 9. Fig. 10 shows the seasonal patterns and understory species 
classification performances. Notice that as n increases the Fourier terms 
capture the early greening of the understory (from third pair) and dif-
ference between the understory and “others” in deciduous forests (from 
fifth pair). In this study, we used eight terms because the accuracy did 
not improve with additional terms (i.e., ninth pair). The overall accuracy 
and minimum accuracy decreased by 1% and 5% when using five pairs 
of terms, and further reduced by 2% and 3% when using three pairs of 
terms. 

4.1.4. Influence of observation density 
The density of the clear observations within the observation window 

is important to estimate an accurate harmonic time series model that 
captures the subtle spectral-temporal differences among the different 
understory species (Zhang et al., 2021a). We combined three years of 
Sentinel-2 data acquired between 2019 and 2021 to yield three-fold the 
data density as using just one year of data, assuming that the understory 
and deciduous forests were stable and did not undergo changes during 
these three years. Fig. 11 depicted the harmonic time series models (Eq. 
1) and performance with clear observations acquired within different 
years (collapse into a single year). In general, the denser the time series 
observations were, the better the results were owing to the increased 
availability of clear observations within the observation window. The 
denser time series observations by combining three years improved the 

overall accuracy and minimum accuracy by approximately 2% and 6%, 
respectively. The improvement was trivial when observations were ac-
quired from more than three years. 

4.2. Classification maps 

We used 264 variables in scenario 7 (Table 3) and selected 8000 
representative sample after the 10th iterations to build the random 
forest classification model and applied the model to the entire area of CT 
to obtain the understory map. Fig. 12 shows the distribution of target 
understory plant communities in CT, United States. An interactive 
display of the understory species map and synthetic images in obser-
vation window is available at: https://gers.users.earthengine. 
app/view/understory. 

The native mountain laurel is widely distributed across CT, particu-
larly in the western part, while the greenbrier is more concentrated in the 
coastal east. The invasive species of barberry has spread throughout the 
state, especially in the east of the Connecticut River. Mixed invasive 
understory species can be found in eastern CT and central parts spanning 
the Connecticut River. 

4.3. Quantitative evaluation 

We assessed the accuracy and estimated the biases of the generated 
understory map for three themes, in which the first is the presence and 
absence of the understory (understory presence map in Fig. S8-1), the 

Fig. 11. Accuracy by using clear observations acquired in different years. Notably, the accuracies were calculated for the Scenario-4 (Table 3) with broadbands 
and indices. 
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Fig. 12. (a) shows understory species 
distribution in CT and four zoom-in 
validation sites (I, II, III, and IV) are 
displayed in (b)-(e), which correspond 
to the species map, Sentinel-2 synthetic 
image on 80th DOY, Sentinel-2 syn-
thetic image on 120th DOY and VHR 
images, respectively. Column (f) shows 
the in-situ photos (July 2021) of the 
validation pixel location (white cross in 
center) in (b)-(e). The four rows of (b-e) 
are examples of barberry, greenbrier, 
mixed invasive and mountain laurel, 
respectively. DOY: Day-Of-Year; VHR: 
Very High Resolution.   
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second is the measurement of the invasive species and native species 
(invasive/native understory map in Fig. S8-2), and the third is the 
identification of understory species (understory species map in Fig. 12). 

4.3.1. Understory presence map 
The results of the accuracy assessment and unbiased area estimation 

for the understory presence map (i.e., presence and absence of the target 
understory) are illustrated in Table 4. The user’s and producer’s accu-
racy (and 95% CI) for the presence of target understory is 68.42% 
(±2.39%) and 84.03% (±5.99%) respectively, while for the absence of 
target understory it is 98.31% (±0.75%) and 95.98% (±0.29%) 
respectively. The overall accuracy (and 95% CI) is 94.86% (±0.72%). 
The area of target understory is 1222.96±183.95 km2 and occupied 
approximately 9.39% of CT’s land area and one fourth of the deciduous 
forests. 

4.3.2. Invasive/native understory map 
The accuracy assessment and unbiased area estimation for the 

invasive/native understory map (i.e., invasive species of barberry and 
mixed invasive, native species of mountain laurel and greenbrier, and 
“others”) are illustrated in Table 5. The overall accuracy of the invasive/ 
native understory map is 94.70% ± 0.72%. The invasive species had 
both good user’s and producer’s accuracies (approximately 74% ~ 
81%), and the native species had a moderate user’s accuracy of 61.17% 
± 3.40%, but good producer’s accuracy of 83.62% ± 8.13%. The inva-
sive species (649.33 ± 140.59 km2) occupied more than half of the 

shrub understory in deciduous forests of CT, compared to the native 
species (577.09 ± 121.26 km2). 

4.3.3. Understory species map 
The accuracy assessment and unbiased area estimation for the un-

derstory species map (i.e., four target understory classes and “others”) 
are in Table 6. The overall accuracy of the species map (93.12% ±
0.75%) is slightly lower than that of the binary understory presence 
map. The “others” (i.e., “others” in deciduous forests and outside of 
potential layer) had both high user’s and producer’s accuracies (>95%) 
in the understory species map. User’s accuracy was moderate for all four 
target understory classes, ranging from approximately 50% to 77%. 
Producer’s accuracy was high for mountain laurel (98.76% ± 1.10%) and 
moderate for barberry (73.68% ± 8.89%) and mixed invasive (51.31%±

8.25%). Mountain laurel is the native and most widespread of the target 
understory plant communities in CT and occupies 399.46 ± 70.25 km2. 
Barberry and mixed invasive understory species are distributed at similar 
levels of approximately 300 km2. Greenbrier is an important native un-
derstory species that is mostly distributed in coastal regions with an 
estimated area of approximately 123.94 ± 108.62 km2. 

4.4. Error sources 

The commission error of the understory maps was mainly from the 
confusion of the mixed forests, wetlands and disturbed deciduous forests 
(typically harvest). The misclassification of mixed forests as mountain 

Table 4 
Confusion matrices and estimates of accuracy, area, and their uncertainty (with 95% CI) for the understory present map. Columns represent reference labels and area 
estimation, and rows represent map strata.   

Reference data 

Map class Presence of understory Absence of understory  

Confusion matrix, sample counts 
Presence of understory 260 120 
Absence of understory 5 290  

Confusion matrix, area proportions 
Presence of understory 0.0789 0.0364 
Absence of understory 0.0150 0.8697  

Accuracy and area estimates 
Area proportion [0-1] 0.0939 0.9061 
Area [km2] 1222.96±183.95 11,800.04±183.95 
Map bias [%] +279.04 -279.04 
User’s acc. [%] 68.42±2.39 98.31±0.75 
Producer’s acc. [%] 84.03±5.99 95.98±0.29 
Overall acc. [%] 94.86±0.72  

Table 5 
Confusion matrices and estimates of accuracy, area, and their uncertainty (with 95% CI) for the invasive and native understory species mapping. Columns represent 
reference labels and area estimation and rows represent map strata.   

Reference data 

Map class invasive understory native understory Others  

Confusion matrix, sample counts 
invasive understory 128 4 42 
native understory 2 126 78 
Others 3 2 290  

Confusion matrix, area proportions 
invasive understory 0.0403 0.0013 0.0132 
native understory 0.0006 0.0371 0.0229 
Others 0.0090 0.0060 0.8697  

Accuracy and area estimates 
Area proportion [0-1] 0.0499 0.0443 0.9058 
Area [km2] 649.33 ± 140.59 577.09 ± 121.26 11,796.58 ± 183.60 
Map bias [%] +63.67 +211.91 -275.58 
User’s acc. [%] 73.56 ± 3.35 61.17 ± 3.40 98.31 ± 0.75 
Producer’s acc. [%] 80.78 ± 8.45 83.62 ± 8.13 96.01 ± 0.29 
Overall acc. [%] 94.70 ± 0.72  
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laurel understory in deciduous forest was the major commission error in 
the understory map, because they were both evergreen vegetation and 
shared similar spectral characteristics. Wetlands with skunk cabbage, 
fern, moss, and/or spicebush were misclassified as understory sometimes, 
namely barberry or mixed invasive, because they share a similar early 
greening phenology (Neufeld and Young, 2014). In addition, we 
assumed that the deciduous forests and understory were stable during 
the study period (between 2019 and 2021), and if some forest distur-
bance (typically harvest) occurred after 2019, the time series may still 
capture the understory signal, but our validation process (in July 2021) 
would regard them as “others” (i.e., non-deciduous forests). If a more 
accurate map of the deciduous forests were available, the commission 
error could be reduced to <15%. That said, there were still some com-
mission errors in the deciduous forests, mainly owing to the existence of 
non-target understory vegetation (such as lowbush and blueberry). Most 
of these misclassified validation sample also included sparse target un-
derstory plant communities (<10% cover). These mixed pixels could 
provide mixed signals in the time series model and led to 
misclassification. 

The omission error of the understory presence map was approxi-
mately 15%, which indicated that the proposed approach can detect the 
understory beneath the canopy well. Compared to mapping understory 
presence, identification of the different understory species, especially 
the deciduous species, is a more difficult task. In the understory species 
map, the evergreen understory of mountain laurel was well extracted 
with a small omission error of <2%. The errors mainly came from the 
confusion of different kinds of deciduous understory (i.e., barberry, 
greenbrier and mixed invasive). If we extracted the distribution of invasive 
understory, we achieved both the user’s and producer’s accuracies of 
approximately 75–80%. However, the labeling of different types of the 
invasive understory was extremely difficult because they frequently 
grew nearby and were presented as mixed pixels in Sentinel-2 images. 
For example, the mixed invasive class could include a proportion of 
barberry (<50%) and a small proportion of native greenbrier (due to co- 
occurrence) and therefore was easily misclassified with barberry and 
greenbrier. 

In the validation process, we randomly selected sample within 
publicly accessible properties that could be reached in a reasonable 
amount of time and distance from a road or parking area for logistical 
reasons. Consequently, some validation sample correspond to edge 
pixels between the understory and non-understory. According to the 
previous analyses on the selection of validation sample (Heydari and 
Mountrakis, 2018; Powell et al., 2004), the accuracy of the understory 

map could be higher if we were to collect a greater number of validation 
sample from interior portions of mapped target understory patches. For 
the understory species map, the user’s accuracy and producer’s accuracy 
of the barberry and mixed invasive would increase by approximately 5% if 
excluding these edge pixels with high uncertainty (See Table S8). 

5. Discussion 

5.1. Automated detection of understory plant communities 

Despite numerous attempts to monitor forests through multispectral 
satellite imagery (Anderegg et al., 2022; Hansen et al., 2013; Senf and 
Seidl, 2021; Zhu et al., 2012a), the detection of understory plant com-
munities within the forest ecosystem remains a difficult task, and the 
identification of different understory species is even more challenging. 
To this end, we developed an automated time series algorithm (open- 
source package at https://github.com/GERSL/understory_mapping) 
that took into account the distinct phenology between understory plant 
communities and forest canopy in the spring prior to canopy leaf-on 
(defined as the observation window in this study). The observation 
window varies depending on the ecoregion, and a random forest clas-
sifier can be built and applied accordingly at the ecoregional scale. In 
this study, the study area of CT is mainly located in the Northeastern 
Coastal Zone (https://www.epa.gov/eco-research/ecoregions), where 
the greening of the understory plant communities generally begins in 
early April, while the deciduous forest canopy greens up in late April and 
early May. Consequently, the calibrated random forest model can be 
directly applied to the Northeastern Coastal Zone in the United States 
(such as Rhode Island and eastern Massachusetts) given their similar 
spring phenology (Dannenberg et al., 2015; Reed, 2006; Seyednasrollah 
et al., 2018; White et al., 2009). Additionally, this approach is trans-
ferable to other regions by recalibrating the random forest classifier, 
provided that local training sample are available for the ecoregion. 
Similar to some previous methods (Pasquarella et al., 2018; Sun et al., 
2021b; Tuanmu et al., 2010), our approach leveraged dense Sentinel-2 
time series to capture the phenological differences between over and 
understory plants and is thus characterized by its flexibility and 
expansibility. 

5.2. Spatial distribution of different understory species 

We generated the distribution maps of understory plant communities 
at the state scale of CT, United States (Yang et al., 2023). We mapped the 

Table 6 
Confusion matrices and estimates of accuracy, area, and their uncertainty (with 95% CI) for the understory species map. Columns represent reference labels and area 
estimation and rows represent map strata.   

Reference data 

Map class Barberry Greenbrier Mixed invasive Mountain laurel Others  

Confusion matrix, sample counts 
Barberry 58 0 23 1 23 
Greenbrier 0 63 2 1 16 
Mixed invasive 8 3 39 0 19 
Mountain laurel 0 0 0 62 62 
Others 1 2 2 0 290  

Confusion matrix, area proportions 
Barberry 0.0195 0 0.0077 0.0003 0.0077 
Greenbrier 0 0.0028 0.0001 0 0.0007 
Mixed invasive 0.0018 0.0007 0.0089 0 0.0044 
Mountain laurel 0 0 0 0.0303 0.0303 
Others 0.0030 0.0060 0.0060 0 0.8697  

Accuracy and area estimates 
Area proportion [0-1] 0.0261 0.0096 0.0234 0.0548 0.8862 
Area [km2] 316.48±89.61 123.94±108.62 296.26±116.63 399.46±70.25 11,886.86±188.64 
Map bias [%] +142.52 -75.94 -90.26 +389.54 -365.86 
User’s acc. [%] 55.24±4.88 76.83±4.69 56.52±6.01 50.00±4.51 98.31±0.75 
Producer’s acc. [%] 80.11±10.24 29.75±13.37 39.30±8.15 98.76±1.10 95.28±0.34 
Overall acc. [%] 93.12±0.75  
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understory plant communities in three levels, including understory 
presence map, invasive/native species map, and understory species 
map, and all three maps achieved high overall accuracies (>93%). 
Approximately one-quarter of the deciduous forest ecosystems in CT 
exhibited the targeted understory plant communities, with more than 
half of them comprising invasive species. 

To the best of our knowledge, this was the first map of understory 
plant communities with multiple classes (notably deciduous understory 
species) at a regional scale. To date, there were few resources available 
to provide the spatial distribution of the understory plant communities, 
with the current estimation largely being conducted through modeling 
the probability of occurrence of understory based on random plots 
investigation in the field (Naqinezhad et al., 2022). In the United States, 
the U.S. Forest Service’s Forest Inventory and Analysis program (FIA) 
collected the forest and understory vegetation data through field in-
ventory and used random plots to measure the density and diversity of 
the understory (Gray et al., 2012; Hoover et al., 2022; Patterson and 
O’brien, 2011). However, these plots-based investigations did not pro-
vide the distribution of the understory plant communities seamlessly in 
space. The maps will assist in pinpointing the locations of understory 
plant communities and informing local invasive plant species manage-
ment and intervention practices. 

Moreover, we identified the species of the understory plant com-
munities and thus provided the distribution of the invasive species. The 
previous work mainly focused on the mapping of the presence of un-
derstory plant communities (Dai et al., 2020), and some works recog-
nized the different classes of evergreen understory vegetation beneath 
the deciduous forest canopy (Chastain and Townsend, 2007; Singh and 
Gray, 2020; Tuanmu et al., 2010; Welch et al., 2002). Our species map 
underscored that the dense Sentinel-2 time series can be used to capture 
the subtle yet distinct phenology difference between deciduous under-
story shrubs and deciduous forest canopy, and between different un-
derstory species. This implies that the proposed approach has the 
potential to be applied to detect the different vegetation classes with 
distinct phenology, such as the invasive plant classes, and the classifi-
cation of different crop types. 

5.3. Impact of density on time series analysis 

The density of the time series observations was pivotal for capturing 
the spring phenology within the narrow observation window. Sentinel-2 
has a revisit frequency of every five days and theoretically provides 
sufficient temporal resolution (Lee et al., 2022; Ahl et al., 2006) to detect 
understory plant communities. However, the impact of cloud cover 
reduced the density of the clear observations. The clear observations in a 
single year would be not sufficient to capture the distinct phenology 
between deciduous understory plant communities and deciduous forest 
canopy. Furthermore, the performance of time series analysis was 
drastically dependent on the observation density (Zhang et al., 2021a). 
To address this issue, the combination of observations acquired over 
multiple years had been used by some other work to construct a time 
series model with better performance (Baumann et al., 2017). The major 
drawback of such a combination was the assumption that the forests did 
not experience dramatic disturbances within three years. 

Therefore, there was a delicate balance between capturing the un-
derstory signal better and the assumption of unchanged forests. In this 
study, we combined the observations in three years to generate the 
threefold denser observations based on the calibration of training data 
(Section 4.1.4). Compared to the time series constructed from the 
observation in a single year, the threefold observations improved the 
overall accuracy and minimum accuracy by approximately 2% and 6%, 
respectively. The assumption of a long-term stable period might lead to 
commission errors if the understory or deciduous forests underwent 
changes during this period. In our validation process, 10% of the mis-
classified sample were attributed to a forest harvest between 2019 and 
2021. We obtained a balance between the assumption of a stable period 

(three years in this study) and sufficient clear observations for capturing 
the understory phenology. 

This limitation could be further alleviated by using NASA’s Harmo-
nized Landsat and Sentinel-2 (HLS) data (Babcock et al., 2021; Claverie 
et al., 2018; Shang and Zhu, 2019). The HLS data enabled repeated 
coverage every 2-3 days and provided higher denser observations to 
capture the spring phenology. However, HLS data has a spatial resolu-
tion of 30 m, which is not sufficient (up to 10 m) for accurate mapping 
understory (Shouse et al., 2012). Given the development of data fusion 
techniques (Shao et al., 2019; Zhang et al., 2021b; Zhu et al., 2022), the 
emergence of HLS data at 10 m with both high temporal and spatial 
resolution (Song and Zhu, 2022) offers new opportunity for mapping 
understory plant communities at the annual scale and even track the 
spatial change of the understory, such as the proliferation and extinction 
of understory plant communities. 

5.4. Selection of representative sample 

The paper proposed an iterative solution to select representative 
sample for random forest classification, particularly in the context of 
understory mapping. The selection of representative sample among a 
large amount of training data was important for random forest classifi-
cation (Li et al., 2016, 2017; Liang et al., 2016; Liu et al., 2020; Wen 
et al., 2022). Understory plant communities are distributed with het-
erogeneous patterns (der Sluijs et al., 2016; Ozdemir, 2014; Tinya and 
Ódor, 2016), such as the varying densities over space and a mixed 
composition of the understory species (especially for the class of mixed 
invasive). Thus, the selected sample should reflect the phenological and 
spectral characteristics of abundant phenomena of the same understory 
plant classes (Li et al., 2020). 

In this study, we selected 8000 representative sample and calibrated 
an optimal random forest classifier (Section 4.1.1). If we randomly 
selected 8000 sample, the overall accuracy and minimum accuracy of 
the calibrated random forest classifier decreased 1.5% and 5%, respec-
tively. Moreover, the calibration results proved that the addition of 
representative sample did not further improve the accuracy of the 
model. This indicated that the sample were sufficiently representative to 
cover the typical conditions for each understory class. Consequently, the 
proposed ISRS approach can help to generate representative sample, 
particularly in classification tasks where varying conditions exist within 
the same class. It should be noted that the solution depends on the high- 
quality training data. If the training data contained a lot of noise and 
low-confidence sample, the iterative selection process would propagate 
errors. For example, ISRS was not adopted to map the deciduous forests 
in this study, because the sample for the background (such as developed 
land, open water, and soil) were randomly generated from the NLCD 
2019 map. The uncertainty of these sample would lead to accumulated 
errors when the random forest model was iteratively updated (See 
Supplementary S3.2). 

6. Conclusion 

In conclusion, our proposed method, based on dense Sentinel-2 time 
series observations, effectively addressed the challenges of mapping 
understory plant communities from satellite images. A harmonic time 
series model was used to capture the distinct phenology in the narrow 
observation window between understory plant communities and forest 
canopy, and between different species of understory plants, allowing us 
to overcome the obstruction of the forest canopy to the understory layer. 
We demonstrated that the use of vegetation indices and GLCM texture 
features benefited the understory classification, which improved overall 
accuracy by 5% and the minimum accuracy by 12%. Moreover, the 
proposed ISRS approach improved the accuracy (e.g., by 10% of the 
minimum accuracy) and helped to build a concise random forest clas-
sification model with a small number of training sample. The final bi-
nary understory presence map, the invasive/native understory map and 
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the understory species map in CT, United States, achieved overall ac-
curacies of approximately 94.86%, 94.70% and 93.12%, respectively. 
Notably, all the input variables of the random forest classifier were 
extracted from estimated harmonic time series model through a fully 
automated process. The approach is transferable to other ecoregions 
after the recalibration of the random forest classifier with the use of local 
training data. Therefore, Sentinel-2 time series is a feasible option for 
mapping understory plant communities and has the potential for oper-
ational understory mapping for other places and at a much larger scale. 
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