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A B S T R A C T   

PlanetScope satellite data with a 3-m resolution and near-daily global coverage have been increasingly used for 
land surface monitoring, ranging from land cover change detection to vegetative biophysics characterization and 
ecological assessments. Similar to other satellite data, effective screening of clouds and cloud shadows in 
PlanetScope images is a prerequisite for these applications, yet remains challenging as PlanetScope has 1) fewer 
spectral bands than other satellites hindering the use of traditional methods, and 2) inconsistent radiometric 
calibration across satellite sensors making the cloud/shadow detection using fixed thresholds unrealistic. To 
address these challenges, we developed a SpatioTemporal Integration approach for Automatic Cloud and Shadow 
Screening (‘STI-ACSS’), including two steps: (1) generating initial masks of clouds/shadows by integrating both 
spatial (i.e. cloud/shadow indices of an individual PlanetScope image) and temporal (i.e. reflectance outliers in 
PlanetScope image time series) information with an adaptive threshold approach; (2) a two-step fine-tuning on 
these initial masks to derive final masks by integrating morphological processing with an object-based cloud and 
cloud shadow matching. We tested STI-ACSS at six tropical sites representative of different land cover types (e.g. 
forest, urban, cropland, savannah, and shrubland). For each site, we evaluated the performance of STI-ACSS with 
reference to the manual masks of clouds/shadows, and compared it with four state-of-the-art methods, namely 
Function of mask (Fmask), Automatic Time-Series Analysis (ATSA), Iterative Haze Optimized Transformation 
(IHOT) and the default PlanetScope quality control layer. Our results show that, across all sites, STI-ACSS 1) has 
the highest average overall accuracy (98.03%), 2) generates an average producer accuracy of 95.53% for clouds 
and 89.48% for cloud shadows, and 3) is robust across sites and seasons. These results suggest the effectiveness of 
using STI-ACSS for cloud/shadow detection for PlanetScope satellites in the tropics, with potential to be extended 
to other satellite sensors with limited spectral bands.   

1. Introduction 

Optical satellite sensors, such as Landsat and Moderate Resolution 
Imaging Spectroradiometer (MODIS), have long been used for land 
surface monitoring, ranging from mapping land cover changes (Byrne 
et al., 1980; Chen et al., 2019a; Friedl et al., 2010) to quantifying 
ecosystem responses to climate change (Braswell et al., 1997; Jeong 
et al., 2011; Piao et al., 2006; Yuan et al., 2019). Over recent years, the 
increasing availability of high spatial and temporal resolution satellites 

offers an unprecedented opportunity to monitor the rapid and fine-scale 
dynamics of the Earth's surface. As an example of these new generations 
of satellites, the PlanetScope constellation of approximately 130 micro 
satellites (CubeSats) provides a near-daily global coverage at a 3-m 
spatial resolution with four spectral bands (i.e. red, green, blue, and 
near-infrared (NIR)) (Planet, 2020). With such advantages, PlanetScope 
has been increasingly advocated as a powerful means to advance land 
surface monitoring, with accumulated many applications, such as 
disaster monitoring (Ganci et al., 2020; Wang et al., 2019), fine-scale 
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land cover change detection (Halls and Magolan, 2019; Zeng et al., 
2018), precision agriculture (Breunig et al., 2020), and tree-crown scale 
phenology quantifications (Chen et al., 2019b; Wu et al., 2021). 

Similar to other commonly-used satellite observations, PlanetScope 
data are also subject to artifacts associated with the Bidirectional 
Reflectance Distribution Function (BRDF) effect and cloud/cloud 
shadow contamination. Consequently, algorithms that can help mini-
mize these artifacts are needed before using PlanetScope data for land 
surface monitoring. To correct the BRDF effect, an approach that cross- 
calibrates PlanetScope to BRDF-adjusted MODIS has recently been 
developed and evaluated in both tropical (Wang et al., 2020) and 
temperate (Wu et al., 2021) forests, with consistently high accuracy at 
both MODIS and PlanetScope pixel scales. However, an accurate and 
automatic approach to detect and mask out clouds/cloud shadows in 
PlanetScope remains lacking. Although a default quality control layer, i. 
e. Unusable Data Mask (UDM) (Planet, 2018) and UDM2 (Planet, 2020), 
has been provided by Planet Lab Inc. to flag candidate PlanetScope 
pixels contaminated by clouds/cloud shadows, this default layer is 
mainly used as a cloud coverage filter to aid users to search and order 
PlanetScope images and remains insufficient for accurate cloud/cloud 
shadow removal, which is important for subsequent quantitative anal-
ysis. For example, after applying the UDM quality control on Planet-
Scope images in a homogeneous tropical forest landscape, Wang et al. 
(2020) observed that there remained many unidentified, fragmented 
clouds/cloud shadows in PlanetScope images, and applied an additional 
processing that involved labor-intensive visual assessments to carefully 
mask out the remaining cloud/cloud shadow pixels. Although UDM2 
that relies on a supervised machine learning model is provided as an 
improved quality control layer relative to its earlier version (i.e. UDM) 
(Planet, 2020), the overall accuracy of cloud and cloud shadow detec-
tion using UDM2 has not yet been thoroughly assessed (Cheng et al., 
2020), and is not available for dates prior to August 2018 (Planet, 2020). 
Therefore, accurate and automatic screening of clouds and cloud 
shadows remains an essential first step to make full use of PlanetScope 
data for improved land surface monitoring (Shendryk et al., 2019; Wang 
et al., 2020). 

To minimize the contamination effects from clouds/cloud shadows, 
many cloud/cloud shadow screening algorithms have been developed 
for MODIS, Landsat, and Sentinel-2, but remain lacking for PlanetScope. 
These methods can be grouped into two categories (Zhu et al., 2018): 1) 
single-image-based methods (Choi and Bindschadler, 2004; Fisher, 
2014; Irish et al., 2006; Li et al., 2015; Luo et al., 2008; Roy et al., 2010; 
Wilson and Oreopoulos, 2013; Zhu and Woodcock, 2012) and 2) multi- 
temporal-based methods (Chen et al., 2016; Goodwin et al., 2013; 
Hagolle et al., 2010; Jin et al., 2013; Wang et al., 1999; Zhu and Helmer, 
2018; Zhu and Woodcock, 2014). Single-image-based methods mainly 
rely on certain unique physical characteristics of clouds/cloud shadows, 
which, together with empirical or adaptive thresholds, can differentiate 
clouds/cloud shadows from other backgrounds in the same satellite 
image. These physical characteristics normally include apparent differ-
ences between clouds/cloud shadows and clear pixels in their spectral 
reflectance (Luo et al., 2008), surface temperature (Huang et al., 2010; 
Irish et al., 2006), and geometric and texture features (Li et al., 2017). 
For example, with the unique spectral signature of clouds/cloud 
shadows and more than 20 predefined or adaptive thresholds, Zhu and 
Woodcock (2012) developed a method (now known as function of mask, 
Fmask) that can effectively detect clouds/cloud shadows in Landsat 
Thematic Mapper (TM) and Enhanced TM Plus (ETM+) data and is later 
adopted to the applications in both Landsat 8 and Sentinel-2 data (Qiu 
et al., 2019; Zhu et al., 2015). Fmask has now been widely used by the U. 
S. Geological Survey (USGS) to provide Quality Assessment (QA) for 
Landsats 4–8 Collection level-1 and level-2 products. Besides these 
threshold-based methods, there are also some other methods employing 
machine-learning algorithms such as decision trees (Scaramuzza et al., 
2012; Wei et al., 2020), neural networks (Chai et al., 2019; Hughes and 
Hayes, 2014; Jeppesen et al., 2019; Segal-Rozenhaimer et al., 2020), and 

support vector machines (Li et al., 2015) to train complex models for 
automatic cloud and cloud shadow detection. 

The second category of cloud/cloud shadow detection algorithms is 
multi-temporal-based methods that detect clouds/cloud shadows using 
two or more satellite images of the same region. The central hypothesis 
underlying these methods is that cloud/cloud shadow pixels have a 
larger temporal variation in their spectral reflectance or brightness than 
clear pixels in an image time series, and consequently, accounting for 
such temporal information could improve the accuracy of cloud/cloud 
shadow detection. For example, Wang et al. (1999) and Hagolle et al. 
(2010) independently showed that a pair of two-images (i.e. cloudy vs. 
cloud-free Landsat/FORMOSAT-2 images) together with a threshold 
value can help differentiate cloud/cloud shadow pixels from clear ones. 
Chen et al. (2016) used a clear Landsat image as reference, and devel-
oped an iterative haze optimized transformation (IHOT) for automatic 
differentiation of cloudy/hazy pixels from clear ones. However, the 
requirement of a clear reference image constrains the broad applications 
of these two-image-based methods, as a clear image is not always 
available. To resolve this issue, Zhu and Woodcock (2014) firstly pro-
posed a multi-Temporal mask (Tmask) based on Landsat image time 
series to identify clouds and cloud shadows without any predefined clear 
satellite image as input, though it is often criticized for being compu-
tationally expensive. Based on this earlier success, Zhu and Helmer 
(2018) further developed an Automatic Time-Series Analysis (ATSA) 
method that automatically screens clouds/cloud shadows with a time- 
series analysis on a cloud/shadow index. This method circumvents the 
requirement for a clear reference image and also has greater computa-
tional efficiency. Additionally, this multi-temporal-based method has 
also been shown to have improved accuracy in screening clouds/cloud 
shadows than the single-image-based method (e.g. Fmask), especially in 
areas with persistent cloud cover (Zhu and Helmer, 2018). 

Despite the fact that these two categories of cloud/cloud shadow 
screening algorithms have been developed and successfully imple-
mented for MODIS, Landsat, and Sentinel-2, their applicability to 
PlanetScope data is challenged by two factors. First, most of these al-
gorithms (e.g. Fmask, Tmask, and ATSA) rely on input from more 
spectral bands, including the shortwave infrared (SWIR) or thermal 
infrared (TIR) bands that are particularly sensitive to clouds/cloud 
shadows (Irish et al., 2006; Zhu and Helmer, 2018; Zhu and Woodcock, 
2012) but which are absent from the PlanetScope data. Consequently, 
these algorithms cannot be directly applied to PlanetScope. Second, 
these algorithms use predefined or adaptive thresholds that are often 
optimized to the sensors of specific spatial resolution and radiometric 
characteristics. These default threshold values may not work for Plan-
etScope due to the fundamental difference in its spatial resolution and 
potentially also in the radiometric calibration associated with the use of 
different atmospheric correction methods and radiometric in-
consistencies among PlanetScope images acquired by different CubeSats 
(Houborg and McCabe, 2018). Here we hypothesize that the integration 
of spatial and temporal information may provide an alternative way for 
effective cloud/cloud shadow screening, despite there being fewer 
spectral bands available in PlanetScope data. Similar approaches inte-
grating spatial and temporal information have been developed for 
Landsat data by previous methods such as Tmask (Zhu and Woodcock, 
2014) and ATSA (Zhu and Helmer, 2018). These methods take spatially- 
derived cloud/shadow indices from single-date images combined with 
temporally-spectral variations among images in a time series, and are 
able to effectively screen clouds and cloud shadows, even with fewer 
input spectral bands (i.e. not including TIR bands) and fewer predefined 
thresholds. However, whether a similar approach can be adapted to 
PlanetScope data remains unknown. 

To evaluate the feasibility of our hypothesis, we used the tropics as a 
testbed, for three reasons. First, there is a practical and urgent need, as 
tropical areas are characterized by frequent precipitation and high cloud 
cover, resulting in heavy cloud contamination in satellite images (Maeda 
et al., 2016; Samanta et al., 2010). Second, the tropics are undergoing 
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fast and fine-scale changes in land cover types due to selective logging 
(Asner et al., 2005), agricultural expansion (Laurance et al., 2014), rapid 
urbanization (Mohan and Kandya, 2015), and fire disturbance (Brando 
et al., 2020), and high spatial- and temporal-resolution satellites like 
PlanetScope (Zeng et al., 2018) is critical for capturing such changes. 
Third, tropical forests, which account for around one-third of annual 
terrestrial photosynthesis (Beer et al., 2010), are globally important 
biomes but are vulnerable to climate change (Aleixo et al., 2019; Phillips 
et al., 2009), with large potential impacts on global biogeochemical 
cycles of carbon, water, and energy fluxes and vegetation-mediated 
climate feedbacks (Fu et al., 2013; Stark et al., 2016; Wright et al., 
2017). 

The goal of this study is to develop an effective and accurate method 
for automatic cloud and cloud shadow screening of PlanetScope satellite 
imagery. Given the challenges of the cloud and cloud shadow detection 
in PlanetScope, we highlight three major novelties of this work as fol-
lows. First, we combined both spatial and temporal information to 
compensate for the limited number of spectral bands of PlanetScope; 
second, we developed a novel adaptive threshold approach to overcome 
the radiometric inconsistencies among PlanetScope time series images 
acquired by different CubeSats; third, we integrated a two-step fine- 
tuning, i.e. morphological processing and object-based cloud and cloud 
shadow matching to reduce random/omission/commission errors that 
commonly occur in cloud/shadow masks generated for high spatial 
resolution images. We name this method the SpatioTemporal Integra-
tion approach for Automatic Cloud and Shadow Screening (STI-ACSS). 
By this means, we hope to effectively screen clouds and cloud shadows 
in PlanetScope imagery and reduce observational uncertainty for fine- 
scale tropical land-surface monitoring. For this proof-of-concept, we 

focus on six sites in the cloudy tropics, which include the main tropical 
land cover types, span a large gradient in annual precipitation, and have 
a wide range of percent cloud coverage. 

2. Testing sites and materials 

2.1. Testing sites 

To test the proposed STI-ACSS method, we selected six tropical sites 
that are representative of different land cover types across the three 
continents in the tropics (Fig. 1). These include 1) a moist forest land-
scape from the Barro Colorado Island in Panama (henceforth ‘BCI-for-
est’), 2) a metropolitan urban area from Manaus city in North Brazil 
(henceforth ‘Manaus-urban’), 3) a primary intact moist forest from 
Tapajos National Forest k67 site in North Brazil (henceforth ‘k67-for-
est’), 4) a managed forest landscape from a Eucalyptus plantation site in 
South Brazil (henceforth ‘Euc-plantation’), 5) a savannah farm grazed by 
managed cattle in Machakos County, Kenya in Eastern Africa (hence-
forth ‘Machakos-savannah’), and 6) a shrubland landscape from a Mulga 
woodland in Alice Springs, Australia (henceforth ‘Alice Springs Mulga- 
or ASM-shrubland’). 

We selected these testing sites for four reasons. First, these six sites 
represent different land cover types with homogeneous or heteroge-
neous landscapes and span a large range of annual precipitation from 
310 to 2600 mm per year (Table 1). For example, the k67-forest site is a 
homogeneous forest site while the Euc-plantation site has mixed land 
cover types (i.e. commercial Eucalyptus, forest patches, buildings, roads, 
and dark moist soil). 

Second, these sites include bright and dark land surfaces that can be 

Fig. 1. Study sites. (a) locations (the red stars) and (b) false colour composites (RGB=NIR-Red-Green) of PlanetScope images of the six testing sites (i.e. S1-S6) in the 
tropics, including Barro Colorado Island (BCI) in Panama (spatial extent: 6 km × 7.26 km), Manaus city in North Brazil (spatial extent: 20 km × 20 km), Tapajós 
National Forest k67 in North Brazil (spatial extent: 10 km × 10 km), Eucalyptus plantation in South Brazil (spatial extent: 10 km × 10 km), Machakos County in 
Kenya (spatial extent: 10 km × 10 km), and Alice Springs in Australia (spatial extent: 10 km × 10 km). The temporal coverage of PlanetScope observations at these 
sites spans January-December in 2018–2019. The main land cover type of the testing sites are a moist forest at the BCI site (henceforth BCI-forest), a metropolitan 
urban area at the Manaus site (henceforth Manaus-urban), a primary intact moist forest at the k67 site (henceforth k67-forest), a managed ecosystem composed of 
plantation, forest, and buildings at the Eucalyptus plantation site (henceforth Euc-plantation), a savannah farm at the Machakos site (henceforth Machakos- 
savannah), and a shrubland ecosystem from a Mulga woodland at the Alice Springs site (henceforth Alice Springs Mulga- or ASM-shrubland). The map in panel 
(a) is adapted from National Geographic, ESRI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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easily confused with clouds and cloud shadows. For example, the BCI- 
forest site is an island surrounded by coastal areas with sands and has 
roughly 163 m change in elevation (Knight, 1975) where abundant 
topographic shadows are formed associated with mountains. The 
Manaus-urban site represents the largest city in the Amazonas state, 
Manaus, which contains a large quantity of bright man-made structures, 
such as airports, highways, and concrete roofs, with many building 
shadows caused by tall building shelters. 

Third, there is modest to strong temporal variability in surface 
reflectance at these sites. For most multi-temporal-based cloud detection 
methods, large temporal variations in surface reflectance caused by leaf 
phenology (i.e. the periodic cycle in leaf flushing, development, senes-
cence, and abscission with consequences on leaf and canopy surface 
reflectance changes; Chavana-Bryant et al., 2017; Wu et al., 2018) and 
abrupt land cover change can be easily confused with those arising from 
the occurrence of clouds and cloud shadows (Zhu and Helmer, 2018; 
Zhu and Woodcock, 2014). The BCI-forest, k67-forest, and ASM- 
shrubland sites exhibit modest to large seasonal reflectance variability 
caused by the different leaf phenology pattern of various vegetation 
types, such as evergreen and deciduous trees, shrubs, and grass (Detto 
et al., 2018; Ma et al., 2013; Park et al., 2019; Wang et al., 2020; Wu 
et al., 2018). The Euc-plantation site experiences strong seasonal 
reflectance changes caused by harvesting and land cover changes that 
are associated with deforestation and reforestation (Ceccon and Mir-
amontes, 2008; Lopez-Poma et al., 2020; Qin et al., 2019). The 
Machakos-savannah site also presents large temporal and spatial vari-
ability in reflectance induced by the complex vegetation composition (e. 
g. woody plants and herbaceous vegetation) of semi-arid rangelands and 
herbivory through grazing by livestock and wildlife (Cheng et al., 2020). 

Fourth, the six sites have been widely used for ecological and envi-
ronmental research, with great scientific value (Araujo et al., 2002; 
Cleverly et al., 2016; Comita et al., 2010; Kim et al., 2012; Silva et al., 
1995; Vigna et al., 2020; Volkov et al., 2003; Wang et al., 2020; Wu 
et al., 2016). However, substantial cloud contamination has largely 
hindered the utility of remote sensing data to monitor the surface dy-
namics at these and other tropical sites. This makes it particularly 
important to test our method at these sites. 

Details regarding the location, precipitation, dry season duration, 
and spatial extent of these six sites are shown in Table 1. For more details 
about the ecological, hydrological, and topographic characteristics of 
these six sites, refer to previous studies (Campoe et al., 2012; Cleverly 
et al., 2016; de Souza and Alvala, 2014; Holdridge, 1947; Leigh, 1999; 
Rice et al., 2004; Vigna et al., 2020; Wu et al., 2016). 

2.2. Materials 

The four-band PlanetScope data from Planet Lab Inc. (San Francisco, 
CA, USA) were used in this study. We accessed the data from http 
s://www.planet.com/ through a research and education license with 
Planet Lab Inc. In this study, we downloaded the PlanetScope data for 
the above-mentioned six testing sites that span both wet and dry seasons 
with various extents of cloud/cloud shadow covers for each site 
(Fig. S1). The level 3B surface reflectance product of PlanetScope was 
used, which has been orthorectified and pre-processed (including geo-
metric, radiometric, and atmospheric corrections) (Planet, 2020). 

Across the six sites and both seasons in 2018 and 2019, we accessed a 
total of 822 days of PlanetScope land surface reflectance images 
(Table 1). In addition to the surface reflectance data, the corresponding 
default quality control layer (henceforth ‘the default QC’, i.e. UDM and 
UDM2) provided by the Planet Lab Inc. was also accessed and was later 
used for comparison with the developed STI-ACSS method (see Section 
3.3 below). Notably, since the BCI-forest and Manaus-urban sites have 
some water surfaces occupied by lakes and rivers, prior to testing our 
proposed method, we manually masked out these elements in the cor-
responding PlanetScope images with the commercial software ENVI 5.3 
(Exelis Visual Information Solutions, Boulder, Colorado), by following 
the same masking procedure as Zhu and Helmer (2018). 

3. Methods 

The proposed STI-ACSS uses two main steps composed of five tasks 
(A-E) to achieve an effective screening of clouds and cloud shadows in a 
cohort of PlanetScope image time series (Fig. 2). In Step 1, the initial 
cloud and shadow masks are produced for each image in the time series 
by combining both single-image-based (Tasks A and B) and multi- 
temporal-based (Task C) cloud/cloud shadow screening algorithms. 
Tasks A and B respectively rely on an adaptive threshold on a haze 
optimized transformation (HOT; Zhang et al., 2002) -based cloud index 
and a flood-fill transformation approach (Soille, 1999) on a shadow 
index for each single image. Task C is performed with a novel multi- 
temporal-based cloud and cloud shadow screening algorithm, where 
we developed an iterative procedure to identify reflectance outliers 
exceeding a pair of statistical percentiles derived from the entire image 
time series. In Step 2, the derived initial cloud and shadow masks are 
further refined, using morphological processing (Soille, 1999; Zhu et al., 
2015; Task D) and object-based cloud and cloud shadow matching (Zhu 
and Woodcock, 2012; Task E), to remove the “salt-and-pepper noises”, 
as well as to correct under- or over-estimated clouds and cloud shadows. 
The details for each Task are described below. 

3.1. Step 1: Generating initial cloud and shadow masks 

3.1.1. Single-image-based cloud detection (Task A) 
In this section we developed an adaptive threshold to screen out 

candidate cloud pixels with the HOT index—a commonly-used cloud 
index for differentiating cloud and clear pixels (Zhang et al., 2002; Zhu 
and Helmer, 2018; Zhu and Woodcock, 2012). HOT is designed based on 
the fact that the blue and red bands of clear-sky pixels are highly 
correlated regardless of land cover types, which tightly follows a linear 
regression line (synchronically called ‘clear line’) in the blue vs. red two- 
dimensional (2-D) space (Zhang et al., 2002). By contrast, pixels 
contaminated by clouds/haze in this 2-D space display a significant 
departure from the ‘clear-line’ (More details see Zhang et al., 2002). 
Following this idea, the HOT index is calculated as the perpendicular 
distance of a pixel to the clear line: 

HOT =
|a × Bblue − Bred + b|

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + a2

√ (1)  

where Bblue and Bred are the blue and red reflectances of a PlanetScope 

Table 1 
Detailed information of the six testing sites, i.e. BCI-forest, Manaus-urban, k67-forest, Euc-plantation, Machakos-savannah, and ASM-shrubland sites, including the 
location, precipitation, dry season period, spatial coverage, temporal coverage, and the number of accessed PlanetScope images.  

Site Location Precipitation (mm yr− 1) Dry season period Spatial coverage (km2) Temporal coverage Number of images 

BCI-forest 9◦09′N, 79◦51′W 2600 Mid Dec- Mid Apr 6 × 7.26 Jan-Dec, 2018–2019 144 
Manaus-urban 3◦06′S, 60◦01′W 2300 May-Dec 20 × 20 82 
k67-forest 2◦51′S, 54◦58′W 2022 Jun-Dec 10 × 10 111 
Euc-plantation 22◦58′S, 48◦44′W 1400 Mar-Oct 10 × 10 247 
Machakos-savannah 1◦36′S, 37◦06′E 730 Jan-Feb, May-Oct 10 × 10 180 
ASM-shrubland 22◦17′S, 133◦15′E 310 Jan-Dec 10 × 10 58  
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pixel, respectively; a and b are the slope and intercept of the ‘clear-line’, 
respectively. To obtain a and b of the ‘clear line’, we applied a bin-based 
approach to automatically calculate the HOT index per pixel of any 
given PlanetScope image (More details see Zhu and Helmer, 2018). 

Since the HOT values of cloud pixels are generally greater than clear- 
sky pixels, we classified an image pixel (x) as a cloud pixel if its HOT 
value (HOTx) is greater than a given threshold value (henceforth, ‘HOT 
threshold’, THOT); otherwise, we classified it as a clear pixel. The po-
tential cloud mask (pCM) at pixel x (pCMx) can be computed as 

pCMx =

{
1, if HOTx ≥ THOT
0, if HOTx < THOT

(2) 

Here, we proposed an adaptive approach to determine THOT for each 
PlanetScope image, considering that it may vary with land cover types, 
percent cloud cover, and plant phenology. The approach includes four 
steps:  

1) Generate potential HOT thresholds: For this, the HOT indices at 2.5% 
(HOT2.5) and 97.5% (HOT97.5) for each PlanetScope image are 
calculated. In between HOT2.5 and HOT97.5, a series of potential HOT 
thresholds (Ti, i ∈ [1,N]) are also generated by equally dividing this 
range into N (e.g. 50 in this study) intervals. 

2) Record the number of pCM pixels (ni) for each THOT using Ti ac-
cording to Eq. 2. 

3) Display all pairs of (Ti, ni) on a 2-D space, resulting in a mono-
tonically decreasing curve (Fig. 3).  

4) Determine the optimal HOT threshold: Since the L-shaped “corner” 
of the above-derived 2-D curve (Hansen, 1992) has been previously 
shown for the best separation of cloud pixels from those cloud-free 
pixels (Liu and Liu, 2013), here we automatically determined the 
L-shaped “corner” to derive the optimal HOT threshold. Specifically, 
we connected the end point (TN, nN) and the start point (T1, n1) of the 
curve and calculated the perpendicular distance to the connected 
line for each point (Ti, ni). We then identified the point with the 
largest distance as the L-shaped “corner” (Fig. 3), and the corre-
sponding threshold value is used as the optimal HOT threshold. It is 

worthy to note that the way proposed here to identify the L-shaped 
“corner” is just one solution, and interested readers can refer to 
Hansen and Oleary (1993) to learn about other solutions as well. 

3.1.2. Single-image-based cloud shadow detection (Task B) 
To screen out all candidate cloud shadow pixels in a given Planet-

Fig. 2. Flowchart of the SpatioTemporal Integration approach for Automatic Cloud and Shadow Screening (STI-ACSS) method. It includes two key steps composed of 
five tasks (A-E, more details see Section 3.1–3.2). Step 1: generating initial cloud and shadow masks through the integration of single-image-based methods based on 
cloud and shadow indices (Task A and B) and a multi-temporal-based method with an iterative outlier detection (Task C); Step 2: performing a first-round fine tuning 
through morphological processing (Task D) and a second-round fine tuning through an object-based cloud and cloud shadow matching approach (Task E) on the 
initial cloud and shadow masks. Thus, the final cloud and shadow masks are generated. 

Fig. 3. Example demonstration of how to determine the optimal threshold for 
differentiating cloud pixels from cloud-free pixels using an adaptive approach 
(Task A, Fig. 2). The blue line shows the number of potential cloud pixels (Y- 
axis) that have haze optimized transformation (HOT) values larger than a given 
HOT threshold (X-axis). The brown dashed line connects the end point and start 
point of this curve. The optimal threshold is determined as the L-shaped 
“corner”, which has the largest distance to the brown dashed line (e.g. 180 in 
this case on April 06, 2018 at the Euc-plantation site). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Scope image, we first calculated a shadow index (SI) and then applied a 
flood-fill approach (Soille, 1999) on the derived SI image. The SI is 
derived using Eq. 3, which is similar to Luo et al. (2008). 

SI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Bred

meanred
×

BNIR

meanNIR

)√

(3)  

where Bred and BNIR are the reflectances of a PlanetScope pixel at red and 
NIR bands, respectively, and meanred and meanNIR are the mean values of 
red and NIR bands of the entire image, respectively. 

Since cloud shadow pixels typically have much lower SI values 
compared with their surroundings (Fig. 2), we then applied a 
commonly-used flood-fill transformation approach (Soille, 1999), which 
aims to bring the intensity values of darker areas (with lower SI values) 
up to the same intensity level as their surrounding lighter pixels (with 
higher SI values) while removing regional minima that are not con-
nected to the SI image border. With this approach, it would first generate 
a flood-filled SI image without cloud shadows (i.e. floodfill_SI), and then 
identifies all candidate cloud shadow pixels as a potential shadow mask 
(pSM) with an empirical threshold on a SI image difference (the flood-
fill_SI image - the original SI image). For details about the flood-fill 
approach, please refer to Li et al. (2017) and Zhu and Woodcock 
(2012). Consequently, for a given image pixel (x), its pSM value (pSMx) 
can be computed as: 

pSMx =

{
1, if floodfill SIx − SIx ≥ 0.1
0, if floodfill SIx − SIx < 0.1 (4)  

3.1.3. Multi-temporal-based cloud and cloud shadow detection (Task C) 
To further detect candidate cloud/cloud shadow pixels, we searched 

‘outliers’ with a significant difference in surface reflectance from clear 
pixels within a cohort of image time series. Specifically, we developed an 
iterative workflow to repeatedly refine the detected ‘outliers’ until the 
cloud and shadow masks stabilize for each image. We initially per-
formed the workflow for each of the four PlanetScope bands individually 
and then aggregated these band-specific outliers to derive the final 
outlier layer. The workflow includes the following five steps (Fig. 2).  

1) Centralize PlanetScope image time series: To minimize the data 
inconsistency on cloud and cloud shadow detection associated with 
inconsistent cross-sensor calibration among different PlanetScope 
sensors (Houborg and McCabe, 2018; Wang et al., 2020), we 
centralized PlanetScope images using the equation Bis − mis, i ∈
[1,4], where i is the PlanetScope spectral band, Bis is the spectral 
reflectance of band i of a given image s, and mis is the mean value of 
band i of image s.  

2) Divide PlanetScope image time series into discrete cubic blocks: We 
divided the image time series into discrete cubic blocks with a user- 
specified size (e.g. 160 × 160 × M pixels, where M is the number of 
images in its time series) and calculated the mean and standard de-
viation for each band (i) of each block (b) as mbi and σbi, respectively. 
Users can set the block size with two considerations: (1) block size 
should be relatively smaller than cloud patches so that the cloud 
information does not significantly overlap with clear land cover; and 
(2) block size should encompass a patch size of land surface that 
represents sufficient spatial variability of clear land cover. In this 
study, a size of 160 × 160 pixels (corresponding to a near 500 m ×
500 m area) is appropriate according to the above two 
considerations.  

3) Identify candidate outlier blocks: The blocks with high temporal 
variability in surface reflectance are more likely to be contaminated 
by clouds/cloud shadows. We thus labelled those blocks with σbi 
greater than the average of all blocks (σbi) as candidate outlier 
blocks.  

4) Detect outliers with a pair of percentile thresholds: As clouds/cloud 
shadows often have much higher/lower reflectance in visible and 

NIR bands than other backgrounds, we expected that clouds/cloud 
shadows are located in the upper/lower ends of the reflectance dis-
tribution of each spectral band. With this, a pair of thresholds of 5 
and 95 percentiles (henceforth ‘outlier threshold’, see Section 3.4 for 
the determination of this threshold pair) were introduced and 
applied to each candidate outlier block, by which we screened out 
cloud/cloud shadow pixels for each candidate outlier block.  

5) Iterate the above four steps to optimize outlier detection: For each 
iteration, we calculated the difference of relative standard deviation 
of the image time series (i.e. ∇σi

mi
, where mi and σi are the mean and 

standard deviation of spectral band i of the time series) before and 
after the removal of the labelled cloud and shadow outliers, and 
repeated the above four steps until the relative difference (i.e. ∇σi

mi
) is 

smaller than 0.01 for each band. After several iterations, ∇σi
mi 

be-
comes stable (<0.01), and all potential cloud and shadow outliers for 
each given band i (pCSOi) are derived. To be conservative in labelling 
all potential cloud/cloud shadow pixels in the image time series, we 
unioned the band-specific pCSOi to generate the final potential cloud 
and shadow outliers (pCSO): 

pCSO =
⋃4

i=1
pCSOi (5) 

Finally, we intersected all the candidate cloud/cloud shadow pixels 
detected respectively by single-image-based methods (i.e. pCM for Task 
A and pSM for Task B) and multi-temporal-based method (pCSO for Task 
C) to derive the initial cloud (iCM; Eq. 6) and shadow (iSM; Eq. 7) masks, 
following the assumption that the cloud/cloud shadow pixels simulta-
neously detected by these two methods would help reduce the omission 
and commission errors for the cloud/cloud shadow detection. 

iCM = pCM ∩ pCSO (6)  

iSM = pSM ∩ pCSO (7)  

3.2. Step 2: Refining initial cloud and shadow masks 

3.2.1. Fine-tuning on the cloud and shadow masks using morphological 
processing (Task D) 

Although the initial cloud and shadow masks derived from Step 1 
can assist in identifying the most likely cloud and cloud shadow pixels, 
two main issues remain, including 1) the “salt-and-pepper noises” and 2) 
the underestimation of the low-density border areas surrounding 
clouds/cloud shadows (Li et al., 2017; Zhu et al., 2015). To address these 
issues, for each PlanetScope image, we integrated morphological 
opening, closing, and dilation with a structure element on the initial 
cloud and shadow masks to remove “salt-and-pepper noises” and to 
include the cloud and cloud shadow border areas (Soille, 1999; Soille 
and Pesaresi, 2002). More specifically, these morphological operations 
use a moving structure element (i.e. a shape including both the target 
pixel and its neighbors) to probe and interact with the input image 
(Gonzalez and Woods, 2006), with different purposes. Morphological 
opening and closing are useful for removing small objects and filling 
small holes and gaps, while preserving the shape and size of larger ob-
jects in the input image. Morphological dilation is useful for expanding 
the shapes and smoothing boundary of objects in the input image. De-
tails regarding these morphological operations are also shown in Eqs. 
8–9 below. 

rCM = (iCM∘E)∙E) ⊕ E (8)  

rSM = (iSM∘E)∙E) ⊕ E (9)  

where iCM and iSM are the initial cloud and shadow masks, respectively; 
rCM and rSM are the refined cloud and shadow masks, respectively; ∘, ∙, 
and ⊕ are the morphological operations of opening, closing, and 
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dilation, respectively; and E is the structure element of morphological 
processing. The structure element is a disk-shaped matrix (Zheng et al., 
1995) with a user-specified size (e.g. 7 × 7 pixels in this study). 

3.2.2. Fine-tuning on the cloud and shadow masks using object-based cloud 
and cloud shadow matching (Task E) 

After Task D, some commission errors remain, particularly associ-
ated with dark or bright surface objects (e.g. moist soil and roads; Fig. 2). 
To further reduce these errors, we applied an object-based cloud and 
cloud shadow matching approach (Zhu and Woodcock, 2012; Li et al., 
2017), which utilizes the cloud-cloud shadow linkage whereby clouds 
and their corresponding shadows usually appear concomitantly in an 
image with similar geometric shapes. More specifically, we first calcu-
lated the projection direction of the cloud shadows relative to their 
corresponding clouds by using the geometric position of the sun (Zhu 
and Woodcock, 2012). We then calculated the best matching distance 
between cloud and cloud shadows by iteratively moving the cloud mask 
along the projection direction until a maximum overlap area is achieved 
between the moved cloud mask and original cloud shadow mask. Lastly, 
we took an additional step as used in Fmask to exclude those cloud pixels 
without matched cloud shadows and vice versa. For more details, see 
Zhu and Woodcock (2012). 

It is worthy to note that there are two scenarios where the object- 
based cloud and cloud shadow matching approach is not applicable 
because clouds do not always have corresponding shadows in the same 
image. These include 1) not all clouds have corresponding shadows, 
including but not limited to thin clouds/haze, and 2) the projected 
cloud/cloud shadow objects are partly at the edges of the image or fully 
outside the image. In order to minimize the uncertainty associated with 
the first scenario, we implemented an additional process as follows: for 
any given PlanetScope image, when the size of cloud objects is far larger 
than the corresponding shadow objects (e.g. more than double) and the 
ratio of the overlapping area of all matching cloud and cloud shadow 
objects to the area of all cloud objects is less than 0.5, we tended to keep 
the refined cloud and shadow masks generated by Task D. To address the 
second issue, we first determined the range of the image edge on x and y 
axes based on the best matching distance between clouds and cloud 
shadows, and kept those objects with their projected clouds/shadows 
partly or fully outside the image. 

3.3. Method evaluation and cross-method comparison 

We have adopted two approaches for method evaluation and cross- 
method comparisons. First, we selected 47 representative PlanetScope 
images, carefully generated manual masks of clouds and cloud shadows 
for each selected image using ENVI 5.3 (Exelis Visual Information So-
lutions, Boulder, Colorado), and used these manual masks for quanti-
tative accuracy assessments across all methods/products, including STI- 
ACSS (our method), the default PlanetScope QCs (i.e. UDM and UDM2), 
Fmask (Zhu and Woodcock, 2012; Zhu et al., 2015), IHOT (Chen et al., 
2016), and ATSA (Zhu and Helmer, 2018). Specifically, these 47 
representative images cover all tropical sites and span a large gradient in 
percent cloud cover (0%–96%), including 9 from BCI-forest, 7 from 
Manaus-urban, 7 from k67-forest, 10 from Euc-plantation, 7 from 
Machakos-savannah, and 7 from ASM-shrubland. We used five accuracy 
metrics for assessments, namely overall accuracy (OA), user's accuracy 
(UA, equal to 100%-percent commission error) of shadows and clouds, 
respectively, and producer's accuracy (PA, equal to 100%-percent 
omission error) of shadows and clouds, respectively (Foody, 2002). 
Second, since STI-ACSS and the default QCs are both developed specif-
ically for the high spatial and temporal resolution PlanetScope data with 
fewer spectral bands, we used the default QCs (i.e. UDM and UDM2), 
particularly the more developed UDM2 (available since August 2018), 
as a benchmark to cross-evaluate STI-ACSS and other methods (i.e. 
Fmask, IHOT, and ATSA). This step helps evaluate the temporal con-
sistency/inconsistency among different methods across the full image 

time series. 
It is noted that 1) the default QCs are available from https://www. 

planet.com/; 2) Fmask and ATSA methods were originally designed 
for multispectral data such as Landsat and Sentinel-2, and thus some 
rules or filters associated with SWIR or TIR bands are not applicable to 
the four-band PlanetScope data; 3) IHOT was developed for detecting 
hazes and clouds, not for cloud shadows. With these considerations, to 
make the cross-method comparison meaningful and rigorous, we care-
fully adjusted the parameters of Fmask, ATSA, and IHOT for each site to 
achieve their best performance, following Chen et al. (2016), Zhu and 
Helmer (2018), and Zhu and Woodcock (2012). The results of these 
parameters are shown in Table S1, while the details regarding how we 
tuned these methods to derive site-specific optimal parameters are 
shown in Supplementary Method 1. Additionally, ATSA was conducted 
in Interactive Data Language (IDL 8.5, Exelis Visual Information Solu-
tions, Boulder, Colorado), while the other three methods (Fmask, IHOT, 
and STI-ACSS) were conducted in Matlab R2019a (MathWorks, Natick, 
MA, USA). 

3.4. Sensitivity analysis: Assessing the effects of the outlier thresholds in 
Task C on the derived cloud and shadow masks using STI-ACSS 

The outlier thresholds in Task C, which are used to determine 
reflectance outliers in the multi-temporal-based method, are critical for 
deriving the final cloud and shadow masks. Here we assessed the effects 
of different thresholds on the final results with the Euc-plantation site as 
an example, including the PlanetScope image time series in 2018 (n =
35). Specifically, we used the manual masks of clouds and shadows as 
reference and evaluated the results that were respectively derived using 
the following five thresholds pairs, i.e. 1) the 1st and 99th percentiles, 2) 
2.5th and 97.5th percentiles, 3) 5th and 95th percentiles, 4) 7.5th and 
92.5th percentiles, and 5) 10th and 90th percentiles. Three represen-
tative dates covering both wet and dry seasons were selected for 
generating manual masks and cross-scenario model performance as-
sessments, including February 22, July 19, and November 13 of 2018. 
The sensitivity analysis suggests that the different threshold pairs tend to 
generate comparable model performance with reference to the manual 
masks (Fig. S2), despite that the threshold pair of the 5th and 95th 
percentiles obtained a slightly higher OA than other threshold pairs 
(Table S2). We thus used the threshold pair of the 5th and 95th per-
centiles in our STI-ACSS. 

4. Results 

4.1. Cross-method comparison across representative images 

To evaluate the accuracy of all methods (STI-ACSS, the default QCs 
including UDM and UDM2, Fmask, IHOT, and ATSA), we conducted 
accuracy assessments on 47 representative images using manual masks 
as benchmarks. STI-ACSS yields a consistently high level of accuracy 
(OA > 95%) across all images covering all sites and seasons (Figs. 4a and 
S3), while other comparative methods generate large variations in OA. 
On average, STI-ACSS obtains the highest OAs and lowest standard de-
viations across all six sites (Fig. 4b), with an OA of 98.03% (mean) ±
1.30% (standard deviation) across all images, followed by UDM2, ATSA, 
Fmask, UDM, and IHOT (Table 2). Additionally, we quantified the per-
formance improvement of STI-ACSS from Step 1 (including Tasks A-C; 
Section 3.1) to Step 1 + Step 2 (including Tasks D-E; Section 3.2). Our 
results demonstrate an average OA of 92.31% when implementing Step 
1 alone, with an additional average increase by 5.72% in OA when also 
implementing Step 2 (Fig. 5). Taken together, these results demonstrate 
that: 1) STI-ACSS is the most accurate among all comparative methods 
and is robust across all land cover types and a wide range of percent 
cloud cover; 2) UDM2 obtains a significantly improved OA in compar-
ison to UDM on average (an OA increase of 8.30%; Table 2); 3) Fmask 
and ATSA obtain higher OA values than UDM; and 4) IHOT obtains the 
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lowest OA partly due to the lack of a cloud shadow detection module. 
STI-ACSS also performs the best in comparison to other methods 

when using the PA (100%-percent omission error) and UA (100%- 
percent commission error) of cloud/cloud shadow detection as evalua-
tion statistics, with the highest average PAs (95.53% for clouds and 
89.48% for shadows; Table 2) and highest average UAs (93.70% for 

clouds and 91.55% for shadows; Table 2). In contrast, the default 
PlanetScope UDM has much larger omission and commission errors in 
the cloud and cloud shadow detection as revealed respectively by much 
lower PAs (56.67% ± 27.05% for clouds and 2.11% ± 3.68% for 
shadows; Table 2) and a very low UA of shadows (18.37% ± 27.80%; 
Table 2). Compared with UDM, UDM2 has significant improvements in 

Fig. 4. Cross-method comparison across a total of 47 representative images in 2018–2019 at all six sites using manual masks as benchmarks. The results of cross- 
method comparison include (a) the overall accuracy (OA) and (b) the average OA value across the six sites. The five methods examined here include STI-ACSS, the 
default PlanetScope quality control layers (i.e. UDM and UDM2), Function of Mask (Fmask), Iterative Haze-Optimized Transformation (IHOT), and Automatic Time- 
Series Analysis (ATSA); error bars indicate one standard deviation. 

Table 2 
Accuracy assessments (mean and standard deviation) across a total of 47 representative images in 2018–2019 at all six sites using manual masks as benchmarks. Five 
indices, i.e. overall accuracy (OA), producer's accuracy (PA) of shadows and clouds, and user's accuracy (UA) of shadows and clouds are used to evaluate the accuracy 
of cloud and shadow masks respectively derived from STI-ACSS, the PlanetScope default QCs (including UDM and UDM2), Fmask, IHOT, and ATSA.  

Method OA (%) PA (%) UA (%) 

shadow cloud shadow cloud 

Mean STD Mean STD Mean STD Mean STD Mean STD 

STI-ACSS 98.03 1.30 89.48 15.01 95.53 14.52 91.55 14.21 93.70 14.20 
default QC-UDM 79.37 18.00 2.11 3.68 56.67 27.05 18.37 27.80 87.77 22.22 
default QC-UDM2 87.67 8.38 30.05 19.33 83.64 16.63 90.43 11.53 75.42 17.02 
Fmask 79.89 15.82 36.48 27.13 90.79 15.84 54.31 29.04 60.67 29.89 
IHOT 70.38 22.65 0.00 0.00 80.44 29.09 0.00 0.00 51.20 33.06 
ATSA 85.16 18.67 64.86 30.37 86.76 17.87 69.08 24.48 73.12 31.39  

Fig. 5. Comparison of two STI-ACSS steps across a total of 47 representative images in 2018–2019 at all six sites using manual masks as benchmarks. The results of 
this comparison include (a) the OA and (b) the average OA value across the six sites. The two steps examined here include STI-ACSS Step 1: generating initial cloud 
and shadow masks (including Tasks A-C of Fig. 2; see Section 3.1) and STI-ACSS Step 2: refining initial cloud and shadow masks (including Tasks D-E of Fig. 2; see 
Section 3.2); error bars indicate one standard deviation. The results show that the average OA of STI-ACSS was improved by 5.72% from Step 1 to Step 1 + Step 2 
(Step 1: 92.31%; Step 1 + Step 2: 98.03%). 
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both PAs (a PA increase of 26.97% for clouds and 27.94% for shadows, 
respectively; Table 2) and the shadow UA (an increase of 72.06%; 
Table 2), but is still insufficient for the cloud shadow detection (shadow 
PA = 30.05%; Table 2). Relative to UDM2, Fmask, and ATSA have 
higher PAs of clouds and shadows with a cost of reducing UAs of clouds 
and shadows (Table 2). Compared with all other methods, IHOT has the 
lowest UA of clouds with the largest variation across all images covering 
all sites and seasons (51.20% ± 33.06%; Table 2). Collectively, these 
results again demonstrate that STI-ACSS performs the best in screening 
clouds and cloud shadows regardless of the accuracy metrics used, with 
high consistency across OA, PAs of clouds and cloud shadows, and UAs 
of clouds and cloud shadows. 

To aid visual interpretation of these cross-method comparisons, we 
next presented 12 representative images across six sites spanning a large 
gradient in percent cloud cover (2%–86%) (Fig. 6). These results clearly 
show that STI-ACSS generates the highest accuracies in screening clouds 
and cloud shadows compared with all other methods. Meanwhile, STI- 
ACSS is not 100% accurate. For example, in certain cases, small por-
tions of moist plantation are misclassified as cloud shadows while some 
thin clouds/cloud shadows are often omitted (e.g. shadow PA = 87.19% 
and shadow UA = 81.42% on March 12, 2018 of the Euc-plantation site, 
and cloud PA = 78.40% on September 05, 2018 of the ASM-shrubland 
site; Table 3). Compared with STI-ACSS, UDM generates much larger 
omission and commission errors in cloud/cloud shadow detection. For 
example, the large omission errors are consistently observed across all 
sites using UDM, leading to much lower PAs of clouds and cloud 
shadows (cloud PA < 86.33% and shadow PA < 7%; Table 3). Mean-
while, for a certain case, e.g. at the Euc-plantation site, it misclassifies a 
large part of plantation as cloud shadows (shadow UA < 5%; Table 3). 
Compared with UDM, UDM2 has significant improvements in its accu-
racies, but still omits some clouds and cloud shadows, especially at the 
ASM-shrubland site (cloud PA < 79.17% and shadow PA < 34.32%; 
Table 3). There are also large omission and commission errors when 
using Fmask for cloud/cloud shadow detection. For example, Fmask 
omits some cloud shadows located at the image edges (e.g. the k67- 
forest site), and sometimes erroneously detects cloud shadows at an 
incorrect distance from their corresponding clouds (e.g. December 13, 
2019 of the BCI-forest site and March 12, 2018 of the Euc-plantation 
sites), resulting in a low PA of shadows (<68.08%; Table 3). Addition-
ally, Fmask misclassifies a significant amount of bright buildings/bare 
soil/building shadows/tree shadows as clouds/cloud shadows on June 
02, 2018 of the Manaus-urban and September 05, 2018 of the ASM- 
shrubland sites, leading to lower UA values (shadow UA < 45.51% 
and cloud UA < 33.99%; Table 3). Similar to Fmask, ATSA also in-
troduces some omission errors in cloud shadow detection and commis-
sion errors in cloud detection. For example, ATSA omits some cloud 
shadows on March 12, 2018 of the Euc-plantation site and September 
05, 2018 of the ASM-shrubland site (shadow PA < 24.69%), and also 
overestimates some bright buildings/branches/building shadows/can-
opy gaps as clouds/cloud shadows, especially for June 02, 2018 of the 
Manaus-urban site and September 12, 2019 of k67-forest site (shadow 
UA < 52.72% and cloud UA < 78.34%; Table 3). Last, IHOT is observed 
with large omission errors in cloud detection, and for some cases, e.g. on 
August 18, 2019 of the Manaus-urban site, it omits a large part of clouds 
in the image (cloud PA = 60.53%; Table 3). Collectively, these results 
demonstrate that STI-ACSS performs the best while UDM and IHOT 
perform the worst in cloud/cloud shadow detection across the repre-
sentative images shown here (Fig. 6). 

Finally, we also observed that traditional methods (i.e. Fmask, IHOT, 
and ATSA) often misclassify the whole image as clouds (Fig. 6), resulting 
in a low cloud UA (<70%; Table 3). In particular, IHOT introduces the 
largest commission errors in cloud detection at the BCI-forest, k67-for-
est, and Machakos-savannah sites (Fig. 6 and Table 3). A likely expla-
nation for this is that IHOT uses an iterative model to derive a ‘clear-line’ 
(i.e. a fitted line for clear pixels in the 2-D space of red vs. blue bands; 
Fig. S4) for separating cloud pixels from those cloud-free ones based on 

their distances to the ‘clear-line’, while for the BCI-forest, k67-forest, 
and Machakos-savannah sites, both cloud and cloud-free pixels follow a 
similar linear relationship in the red-blue space with a slope close to 1 (e. 
g. 0.998–1.187; Fig. S4), resulting in low separability in these cases. 
Meanwhile, we observed that Fmask, IHOT, and ATSA tend to over-
estimate clouds in some cases, e.g. December 28, 2018 of the BCI-forest 
site, March 22, 2019 of the Euc-plantation site, and February 12, 2018 of 
the Machakos-savannah site (Fig. 6; Table 3). This might be related to 
the inconsistent cross-sensor calibration among different PlanetScope 
sensors, and as a result, there is a significant difference in the distribu-
tion of HOT values between two PlanetScope images adjacent in time 
(including the range and median of HOT values; Fig. S5). Also because of 
this, Fmask, IHOT, and ATSA, which rely on either predefined or sta-
tistical HOT thresholds, are observed to work well for some PlanetScope 
images but not all (Fig. 6). Moreover, we observed that STI-ACSS, 
Fmask, and ATSA are all more effective at detecting clouds than IHOT 
(Fig. 6). This is because these methods introduce a virtual ‘clear line’ 
with a larger slope than 1 in the red-blue space (e.g. slope = 2 for Fmask 
and STI-ACSS, and slope = 1.5 for ATSA), which increases the separa-
bility between cloud and cloud-free pixels. Lastly, we observed that STI- 
ACSS has the highest accuracy in cloud detection compared with all 
other methods (Fig. 6). This is largely because STI-ACSS adopted an 
adaptive HOT threshold rather than a fixed or statistical threshold, and 
consequently, it helps to address the issue caused by inconsistent cross- 
sensor calibration among different PlanetScope sensors (Figs. S6-S8). 

4.2. Cross-method comparison across time series images 

To examine the temporal consistency of our STI-ACSS and the three 
other methods (Fmask, IHOT, and ATSA) across the full image time 
series in 2018 and 2019, we used the default PlanetScope QC layer 
(particularly UDM2) as references. As shown in Fig. 7, across all testing 
sites and image time series, STI-ACSS almost consistently yields the 
highest overall agreements with the default QCs among all methods, 
with the highest average OA of 92.49% and the smallest OA standard 
deviation of 7.70%. 

4.3. The effect of seasonal and interannual reflectance changes on the 
STI-ASS-derived cloud and shadow masks 

To evaluate how temporal (seasonal and interannual) reflectance 
changes impact the results of STI-ACSS, we used the full time series in 
2018 and 2019 (n = 24 months) at the Euc-plantation site as an example, 
as temporal reflectance changes at this site are considerable (see the 
colored circles of Fig. 8 as examples). Overall, our results show that STI- 
ACSS accurately detects clouds and cloud shadows across these images, 
without any significant commissions that misclassify those clear pixels 
with large temporal reflectance variations caused by plant phenology (e. 
g. leaf flushing, development, senescence, abscission, flowering, and 
fruiting) or land cover changes as clouds/cloud shadows, particularly for 
the areas highlighted with colored circles. Meanwhile, we also observed 
that STI-ACSS occasionally tends to misclassify clouds/cloud shadows. 
For example, as shown in those areas highlighted with red squares in 
Fig. 8, some small areas of bright surfaces/bare soil/moist plantation/ 
wet soil are misclassified as clouds/cloud shadows. 

5. Discussion 

The high spatial and temporal resolution PlanetScope data have 
shown great potential to advance land surface monitoring, but a critical 
challenge remains with the lack of an effective and accurate approach 
for cloud and cloud shadow detection, particularly in the tropics 
(Shendryk et al., 2019; Wang et al., 2020). To address this challenge, we 
developed a SpatioTemporal Integration approach for Automatic Cloud 
and Shadow Screening, STI-ACSS, and evaluated the effectiveness of this 
method across six tropical sites with various land cover types and 
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Fig. 6. Comparisons of cloud and shadow masks derived from STI- 
ACSS and the other four state-of-the-art methods using manual 
cloud and shadow masks (Fig. S11) as benchmarks. Twelve repre-
sentative images from all six sites spanning a large gradient in percent 
cloud cover ranging from 2% to 86% were used for demonstration 
purposes. False colour composites (RGB=NIR-Red-Green) of selected 
PlanetScope images (the first row) and corresponding cloud and 
shadow masks using STI-ACSS (the second row), the default QCs 
(including UDM and UDM2 in the third and fourth row, respectively), 
Fmask (the fifth row), IHOT (the sixth row), and ATSA (the seventh 
row) are shown below. Colour legends include clouds in white, cloud 
shadows in black, clear pixels in light grey, and backgrounds (covering 
water bodies or missing data) in dark grey. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the 
web version of this article.)   
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percent cloud covers. Our results demonstrate that STI-ACSS can effec-
tively detect clouds and cloud shadows with the highest accuracy (OA =
98.03%; Table 2 and Fig. 4) relative to the other four state-of-the-art 
methods (Fmask, IHOT, ATSA, and the default PlanetScope QCs) and 
high temporal consistency across the image time series of two full years 
(Fig. 7). Taken together, these results suggest that STI-ACSS is an 
effective and accurate approach for automatic cloud and cloud shadow 
detection in the tropics. 

In addition to the effectiveness assessment, the robustness of our 
developed STI-ACSS method was also rigorously assessed with three 
types of tests. First, the test sites spanned a large gradient in land cover 

Table 3 
Accuracy assessments of the 12 representative images in Fig. 6 using manual 
masks as benchmarks. Five indices, i.e. OA, PA of shadows and clouds, and UA of 
shadows and clouds, are used to evaluate the accuracy of cloud and shadow 
masks respectively derived from STI-ACSS, the PlanetScope default QCs 
(including UDM and UDM2), Fmask, IHOT, and ATSA.  

Site 
Date 

Method OA 
(%) 

PA (%) UA (%) 

Shadow Cloud Shadow Cloud 

BCI-forest 
2018-12- 
28 

STI-ACSS 99.35 90.32 99.51 92.92 92.08 
default QC- 
UDM 

97.73 0.12 57.24 1.59 98.95 

default QC- 
UDM2 

97.67 14.44 85.23 94.25 61.10 

Fmask 61.73 0.01 99.82 7.48 3.44 
IHOT 61.73 0.00 99.82 0.00 3.44 
ATSA 61.76 0.81 99.82 79.85 3.44 

BCI-forest 
2019-12- 
13 

STI-ACSS 98.47 87.10 99.38 92.85 97.83 
default QC- 
UDM 

91.81 0.72 66.27 5.87 99.65 

default QC- 
UDM2 

95.57 54.26 74.27 96.98 96.23 

Fmask 94.38 33.37 90.01 69.13 97.46 
IHOT 75.62 0.00 99.39 0.00 19.26 
ATSA 96.69 77.54 79.13 84.43 99.55 

Manaus- 
urban 
2018-06- 
02 

STI-ACSS 97.64 89.84 94.62 93.06 93.76 
default QC- 
UDM 

88.99 0.44 78.67 10.82 88.56 

default QC- 
UDM2      
Fmask 65.36 59.49 87.44 40.19 33.99 
IHOT 85.92 0.00 33.44 0.00 93.85 
ATSA 89.98 94.53 91.62 52.72 78.34 

Manaus- 
urban 
2019-08- 
18 

STI-ACSS 95.05 95.57 96.14 91.70 97.64 
default QC- 
UDM 

40.15 0.83 30.57 39.02 77.39 

default QC- 
UDM2 

81.13 4.48 97.71 98.99 82.44 

Fmask 76.24 37.50 92.15 57.03 81.99 
IHOT 50.11 0.00 60.53 0.00 59.25 
ATSA 80.69 45.43 89.43 74.02 83.76 

k67-forest 
2018-06- 
15 

STI-ACSS 99.41 98.54 99.82 98.23 99.05 
default QC- 
UDM 

82.02 0.27 64.25 6.23 99.77 

default QC- 
UDM2      
Fmask 91.44 68.08 75.69 89.59 99.20 
IHOT 26.30 0.00 99.97 0.00 18.19 
ATSA 94.18 95.71 85.29 79.64 97.81 

k67-forest 
2019-09- 
12 

STI-ACSS 99.10 96.66 99.83 98.05 99.25 
default QC- 
UDM 

58.07 0.21 11.07 8.72 99.94 

default QC- 
UDM2 

82.46 15.10 78.95 98.82 92.50 

Fmask 85.49 59.36 72.77 74.52 99.35 
IHOT 27.53 0.00 64.33 0.00 27.67 
ATSA 60.00 37.67 98.54 47.26 49.15   

Site 
Date 

Method OA 
(%) 

PA (%) UA (%) 

Shadow Cloud Shadow Cloud 

Euc-plantation 
2018-03-12 

STI-ACSS 99.20 87.19 99.68 81.42 91.82 
default QC- 
UDM 

92.58 0.13 50.37 0.05 98.69 

default QC- 
UDM2      
Fmask 96.90 0.96 89.57 1.84 89.99 
IHOT 96.94 0.00 48.32 0.00 98.94 
ATSA 97.56 12.69 81.49 37.44 95.61 

Euc-plantation 
2019-03-22 

STI-ACSS 96.61 85.45 99.06 90.77 86.90 
default QC- 
UDM 

78.85 6.77 70.53 4.32 93.49 

default QC- 
UDM2 

83.59 22.16 94.05 69.89 49.31 

Fmask 83.96 67.83 95.76 50.62 52.82 
IHOT 19.17 0.00 99.97 0.00 11.10 
ATSA 19.23 0.02 99.97 0.48 11.15  

Table 3 (continued ) 

Site 
Date 

Method OA 
(%) 

PA (%) UA (%) 

Shadow Cloud Shadow Cloud 

Machakos- 
savannah 
2018-02-12 

STI-ACSS 97.69 100 97.15 95.86 98.80 
default QC- 
UDM 

50.43 0.02 86.33 73.69 53.01 

default QC- 
UDM2      
Fmask 33.84 0.37 99.96 85.24 33.79 
IHOT 33.77 0.00 99.98 0.00 33.77 
ATSA 73.25 67.04 98.07 93.50 58.17 

Machakos- 
savannah 
2019-06-22 

STI-ACSS 96.66 99.99 98.88 97.33 97.14 
default QC- 
UDM 

35.60 0.00 37.03 0.00 89.22 

default QC- 
UDM2 

75.38 0.00 97.13 0.00 78.16 

Fmask 69.55 0.22 99.94 24.79 69.63 
IHOT 69.52 0.00 99.95 0.00 69.55 
ATSA 83.80 57.41 90.64 83.16 90.16 

ASM- 
shrubland 
2018-09-05 

STI-ACSS 98.23 97.78 78.40 95.05 97.88 
default QC- 
UDM 

89.13 0.00 56.33 0.00 99.64 

default QC- 
UDM2 

91.70 26.60 79.17 96.64 82.87 

Fmask 80.15 38.00 98.26 45.51 25.11 
IHOT 90.10 0.00 91.20 0.00 85.76 
ATSA 90.88 24.69 92.93 67.46 78.42 

ASM- 
shrubland 
2019-08-08 

STI-ACSS 95.25 94.77 99.23 90.72 95.85 
default QC- 
UDM 

63.44 1.06 31.13 39.80 97.46 

default QC- 
UDM2 

71.74 34.32 33.44 91.18 78.94 

Fmask 68.50 24.77 95.33 64.75 55.52 
IHOT 63.28 0.00 93.66 0.00 53.89 
ATSA 77.27 34.88 70.48 95.04 87.51  

Fig. 7. Cross-method comparison across the full image time series in 
2018–2019 at all six sites using the default QC as the benchmark. The com-
parison includes the average OA across the six sites (the left of the grey dashed 
line) and the average OA value of all sites (the right of the grey dashed line) 
among the four methods, i.e. STI-ACSS, Fmask, IHOT, and ATSA. Error bars 
indicate one standard deviation. 
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Fig. 8. Assessing the effect of temporal reflectance changes on the derived cloud and shadow masks of STI-ACSS across full seasons of 2018–2019 at the Ecu- 
plantation site. Colored circles indicate regions with large apparent temporal reflectance changes that were possibly caused by harvesting/land cover changes (e. 
g. deforestation and reforestation). Red squares show the commission errors in cloud and shadow masks of STI-ACSS. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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types (e.g. forest, urban, cropland, savannah, and shrubland; Fig. 1), 
annual precipitation (e.g. 310–2600 mm per year; Table 1), and percent 
cloud covers (e.g. ranging from 0% to 100%; Fig. S1). Second, the testing 
images included various temporal changes in land surface reflectance, e. 
g. associated with plant phenology at the BCI-forest, k67-forest, and 
ASM-shrubland sites, seasonal land cover change at the Euc-plantation 
site, and grazing at the Machakos-savannah site (see Figs. 6 and 8, or 
refer to Cheng et al., 2020; Ma et al., 2013; Park et al., 2019; Qin et al., 
2019; Wu et al., 2018). Third, a rigorous sensitivity analysis was con-
ducted on the key parameter of the STI-ACSS algorithm, i.e. the outlier 
threshold that is used to determine cloud and cloud shadow outliers in 
the multi-temporal-based method (Fig. S2 and Table S2). With the above 
tests, STI-ACSS is demonstrated to be robust, and is able to detect clouds 
and cloud shadows with consistently high accuracies (OA = 95%–100%; 
Figs. 4 and S3) across a wide range of land cover types, annual precip-
itation, and cloud coverage. STI-ACSS is also shown to be robust across 
the annual timescale, with consistently low commission errors (shadow 
UA =91.55% ± 14.21% and cloud UA =93.70% ± 14.20%; Table 2, and 
Fig. 8) in misclassifying those temporal changes associated with either 
plant phenology or land cover changes as the cloud/cloud shadow 
classes. Additionally, our sensitivity analysis demonstrates that STI- 
ACSS is insensitive to the outlier threshold used (Fig. S2) and can 
consistently detect clouds/cloud shadows with high accuracy 
(Table S2). All these results demonstrate the robustness of using STI- 
ACSS for automatic and accurate detection of clouds and cloud shadows. 

The success of STI-ACSS relies on the following three strengths. First, 
to compensate for the limited spectral bands in PlanetScope images, STI- 
ACSS integrates both spatial and temporal spectral variability to 
enhance cloud and cloud shadow detection. Single-image-based 
methods that only use the spatial-wide spectral information for cloud 
and cloud shadow detection often require more spectral bands as input, 
including SWIR and TIR bands (Huang et al., 2010; Irish et al., 2006; Luo 
et al., 2008; Zhu and Woodcock, 2012), which are not applicable to the 
PlanetScope data. Meanwhile, the multi-temporal-based methods that 
rely on the temporal-wide spectral variability for cloud/cloud shadow 
detection have been shown with difficulty in differentiating those tem-
poral variations caused by clouds/cloud shadows from those associated 
with plant phenology or rapid intra-year land cover changes (Zhu and 
Woodcock, 2014). By assimilating the advantages of the two approaches 
while making full use of both spatial and temporal spectral variability, 
STI-ACSS not only compensates for the limited spectral bands of Plan-
etScope, but also improves the accuracy in the cloud and cloud shadow 
detection with reduced commission errors caused by plant phenology 
and intra-year land cover changes (Fig. 8). Although a similar spatio-
temporal integration approach has been successfully tested in ATSA and 
Tmask in Landsat and Sentinel-2 images with a limited number of input 
spectral bands (i.e. 3–5 bands) (Zhu and Helmer, 2018; Zhu and 
Woodcock, 2014), the use of this approach in high-resolution Planet-
Scope satellites has not been explored previously. Such integration (i.e. 
STI-ACSS Step 1) with observed very high accuracy (OA = 92.31%; 
Fig. 5) thus not only complements these previous studies by demon-
strating the feasibility of utilizing the spatiotemporal integration 
approach for effective cloud/cloud shadow detection in PlanetScope 
images, but also suggests the potential to extend this approach to other 
high-resolution satellite sensors with limited spectral bands but frequent 
measurements, e.g. Gaofen-1, Skysat-2, SPOT-7 (Gaofen-1, 2020; Sky-
Sat, 2020; SPOT-7, 2020). 

Second, to minimize the effect of cross-sensor inconsistency in cloud 
detection of PlanetScope images, STI-ACSS includes a novel adaptive 
threshold approach for cloud detection. As shown in Fig. S6, due to the 
radiometric inconsistency of multi-date and multi-sensor imagery, the 
optimal threshold that differentiates clouds from other backgrounds 
often varies from one image to another. This observation is particularly 
apparent in the PlanetScope constellation that is composed of more than 
130 CubeSats, which vary in overpass times, atmospheric conditions, 
spectral response functions, and absolute radiometric accuracies 

(Houborg and McCabe, 2018). Similar to previous adaptive thresholds 
(Huang et al., 2010; Zhu and Woodcock, 2012; Zhu and Helmer, 2018), 
STI-ACSS also employs an adaptive method that optimizes the HOT 
threshold based on the surface and atmospheric conditions of each 
image. Unlike these previous approaches, which use a HOT threshold 
calculated from a fixed multiplier of the standard deviation or a fixed 
percentile of the HOT index across the entire image (or image time se-
ries), we allowed the threshold to be automatically optimized for each 
image without any predefined parameters. For demonstration purpose, 
we compared the results derived using our adaptive threshold approach 
with that derived using 6 other threshold approaches, including a fixed 
threshold (i.e. the average value of the HOT index across full image time 
series), and five fixed percentiles (i.e. 10th, 30th, 50th, 70th and 90th 
percentiles) of each HOT index image (Fig. S6). As shown in Figs. S7 and 
S8, our adaptive threshold is the only approach that generates consis-
tently high accuracies in cloud and cloud shadow detection across all the 
testing images (Table S3). These results also highlight that our proposed 
adaptive threshold approach can likely be extended to the cloud 
detection in other CubeSat constellations, e.g. Lingque and Landmapper- 
HD (Landmapper-HD, 2020; Lingque, 2020), which are also composed 
of many satellite sensors and have similar cross-sensor inconsistency 
issues as PlanetScope. 

Third, to further refine the derived cloud and cloud shadow masks, 
STI-ACSS involves a two-step fine-tuning (i.e. morphological processing 
and object-based cloud and cloud shadow matching). Despite the above- 
mentioned advantages, two main issues remain with the spatiotemporal 
integration approach: (1) the “salt-and-pepper noises” that remain with 
the derived masks (Fig. 2), especially considering there is large spatial 
heterogeneity in the high spatial resolution imagery (Chen et al., 2018; 
Pu et al., 2011) such as PlanetScope, and the omission errors of cloud/ 
cloud shadow edges that are the most common errors in cloud and cloud 
shadow detection methods (Foga et al., 2017); and (2) the commission 
errors that misclassify those non-cloud/cloud shadow pixels (e.g. bright 
or dark surfaces) into the cloud/cloud shadow classes (Fig. 2). To 
address these issues, we applied an integration of morphological pro-
cessing (Soille, 1999; Zhu et al., 2015) and object-based cloud and cloud 
shadow matching (Zhu and Woodcock, 2012) to minimize these noises 
and errors. Importantly, we applied the morphological processing first 
so that it could increase the connectivity of objects, help sieve tiny ob-
jects, and ultimately improve the accuracy and efficiency for the sub-
sequent use of the object-based matching approach for paired cloud and 
cloud shadow detections. Our two-step fine-tuning was built upon the 
previous approach (Fisher, 2014; Luo et al., 2008; Zhu and Helmer, 
2018; Zhu and Woodcock, 2012), but, to our knowledge, has rarely been 
applied to high spatial-resolution satellite images, such as PlanetScope. 
Relative to the spatiotemporal integration approach (i.e. STI-ACSS Step 
1), the performance improvement by an additional 5.72% in OA when 
involving this two-step fine-tuning (i.e. STI-ACSS Step 2; Fig. 5) further 
suggests the necessity and effectiveness of including this additional step 
on cloud/cloud shadow detection for PlanetScope satellite images. 

Our study also identifies three important next steps that need to be 
considered for future advances. First, a considerable omission of low- 
density clouds/haze/cloud shadows, especially those surrounding 
thick clouds/deep cloud shadows or in an image with heavy haze 
contamination (Fig. S9), is found in STI-ACSS. This is very likely because 
the spectral reflectances of thin clouds/cloud shadows are much closer 
to clear pixels than thick clouds/deep cloud shadows, making their 
correct identification challenging when using both single-image-based 
and multi-temporal-based methods (Li et al., 2020; Shao et al., 2019). 
Since recent studies (He et al., 2013; Li et al., 2017) demonstrate that a 
guided filtering approach that uses the statistical features of their 
neighboring pixels is effective for improving the detection of these low- 
density clouds/cloud shadows, to resolve the considerable omission 
issue of low-density clouds/haze/cloud shadows, we thus recommend 
integrating our STI-ACSS with the guided filtering approach in future 
practices. Second, although the effectiveness of STI-ACSS for cloud/ 
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cloud shadow detection is evaluated in this study, its performance might 
be contaminated by the high aerosol loading, which is a common phe-
nomenon in tropical areas due to biomass burning, deforestation, dust 
storms, and others (Cardil et al., 2020; Silva et al., 2018). To investigate 
such impacts, we examined an additional site (7◦29′S, 64◦27′W) in 
Canutama, Amazonas, Brazil, which is dominated by croplands and 
forests, with a reported wild fire event in August 2019 (Lizundia-Loiola 
et al., 2020). Our results from this demonstration site (Fig. S10) show 
that STI-ACSS can accurately screen smoke and smoke shadows, sug-
gesting that STI-ACSS might be also used for aerosol and aerosol shadow 
detection. Since there is large variability in spectral characteristics and 
spatial distributions of aerosol episodes across the pan-tropics (Martins 
et al., 2002; Su et al., 2017; Zhou et al., 2020), therefore more 
comprehensive future tests regarding aerosol detection and impacts on 
STI-ACSS's performance remain needed but is beyond the scope of this 
paper. Third, since STI-ACSS was mainly developed for the land surface 
monitoring in the tropics with water bodies at the BCI-forest and 
Manaus-urban sites being manually masked out, the method may 
encounter challenges when extending to the areas mixed with water 
surfaces (e.g. tropical wetlands, swamps, and flood plains) and regions 
beyond the tropics (e.g. temperate and boreal regions). To address these 
issues, for broader geographical applications that include water bodies, 
we recommend integrating our STI-ACSS with similar approaches as 
used in ATSA and Fmask (Frazier and Page, 2000; Zhu and Helmer, 
2018; Zhu and Woodcock, 2012) to either automatically mask out water 
bodies that simultaneously account for the seasonal flooding impacts or 
enable automatic cloud/cloud shadow detection over water bodies. 
While for temperate/boreal regions, distinguishing between snow/ice 
and clouds would be a major task but remains challenging for Planet-
Scope that does not include the commonly-used spectral bands (i.e. 
SWIR and TIR) for separating snow/ice from clouds (Zhu and Woodcock, 
2012). Since the use of texture features has been shown with effective-
ness for separating snow/ice from cloud/cloud shadow in some previous 
studies (Hu et al., 2015; Li et al., 2017), we thus recommend for future 
attempts that integrate our STI-ACSS with the use of the texture feature 
for the effectiveness assessments of extending STI-ACSS to the 
temperate/boreal regions. Nonetheless, STI-ACSS is broadly effective on 
land within the tropics, a sector of the Earth where previous efforts at 
automatic cloud and cloud shadow detection methods met with mixed 
success (Bodart et al., 2011; Shendryk et al., 2019). STI-ACSS will prove 
valuable for tropical land monitoring, regardless of whether STI-ACSS 
can be extended to other regions with additional subalgorithms or 
complementary tailor methods made for those contexts. 

6. Conclusions 

We have just presented a novel method, STI-ACSS, for automatic 
cloud and cloud shadow detection in tropical areas for PlanetScope 
imagery. This method firstly integrates spatial and temporal spectral 
variability in the image time series to obtain initial cloud/shadow 
masks, and then uses a two-step fine-tuning (i.e. morphological pro-
cessing and object-based cloud and cloud shadow matching) to refine 
the initial masks and derive the final masks. The accuracy of STI-ACSS 
was evaluated at the six contrasting tropical sites over the two years 
(i.e. 2018 and 2019). Compared with the other four state-of-the-art 
cloud/cloud shadow detection methods (i.e. the default PlanetScope 
QC, Fmask, ATSA, and IHOT), STI-ACSS obtains the highest accuracies 
(average OA = 98.03%, cloud PA = 95.53%, and shadow PA = 89.48%) 
with reference to manual cloud and shadow masks. Additionally, the 
robustness of STI-ACSS was also rigorously assessed under a wide range 
of scenarios, i.e. testing sites spanning large gradients in land cover 
types, annual precipitation, percent cloud covers, and temporal changes 
(associated with both plant phenology and land cover types), and 
sensitivity analysis on important parameters of STI-ACSS. With both 
improved accuracy and robustness assessments, we thus concluded that 
STI-ACSS is an accurate and robust approach for cloud and cloud 

shadow detection for PlanetScope images in the tropics, and is likely 
extendable to other satellite sensors with limited spectral bands, e.g. 
Gaofen-1, Skysat, and SPOT-7 (Gaofen-1, 2020; SkySat, 2020; SPOT-7, 
2020). 
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