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A B S T R A C T   

An accurate mapping of land disturbances with regard to their timing and locations is the prerequisite for the 
success of downstream disturbance characterization. This study introduces and tests a novel approach that in-
tegrates a spatial perspective into the dense Landsat time series analysis, called “Object-Based COntinuous 
monitoring of Land Disturbance” (OB-COLD). The new algorithm is based on the recognition that the pixels 
under effects of the same disturbance event often present similar spectral change concurrently in a short time; 
such pixels experiencing concurrent change could be grouped as an analytic spatial unit, namely “change object”. 
OB-COLD first generates a change-magnitude snapshot every 60 days by applying per-pixel time series analysis to 
measure spectral change history. Then, an object-based change analysis is applied for each time-stamped 
snapshot: two levels of change objects are generated through over-segmentation and region merging; the 
changing area is determined by examining three object-level properties derived at different scales: the average 
change magnitude, the pre-change cover type, and the object size. Lastly, OB-COLD reconstructs model co-
efficients for each temporal segment based on the temporal breaks indicated by new snapshot-based change 
maps. We tested the new algorithm using 3000 randomly selected reference sample plots and eight Landsat ARD 
tiles across the continental United States. The accuracy assessment suggests that OB-COLD achieved 76.9% 
producer’s accuracy, which is significantly higher than the per-pixel time series algorithm (i.e., COLD) (16.3 
percentage increase) while keeping a comparable user’s accuracies (58.7% vs. 57.8%). The quantitative and 
qualitative evaluations both suggest that OB-COLD could significantly reduce omission errors, particularly for 
stress disturbances. Most commission errors (73%) are attributed to agricultural practices and climate variability. 
The proposed algorithm is computationally scalable to large-scale spatiotemporal datasets with advanced 
cyberinfrastructure resources, holding great potential as the base detection algorithm for the next generation of 
land disturbance products.   

1. Introduction 

Land disturbance, not limited to forested regions, can be defined as 
any event that is relatively discrete in time and space that disrupts the 
structure of an ecosystem, community, or population (Newman, 2019; 
White and Pickett, 1985). Land disturbances, purportedly driven by 
anthropogenic activities and recent climatic warming, have been 
documented over large parts of the globe with an increase in frequency 
and severity (Dale et al., 2001; Seidl et al., 2017), yielding significant 
impacts on the carbon cycle (Liang et al., 2014; Seidl et al., 2014), 
biodiversity (Martínez-Ramos et al., 2016), water quality (Carey et al., 
2011) and landscape composition (Danneyrolles et al., 2019). Timely 

and accurate mapping of land disturbance events is of enormous 
importance to ecologists and forest managers, allowing for a better 
understanding of ecosystem-climate interactions and improved land 
resource management (Cohen et al., 2016; Rogan and Miller, 2006; Senf 
et al., 2017; Senf and Seidl, 2021). Remote sensing technology, typically 
the medium-resolution time series analysis, has been widely used for 
detecting a variety of land disturbances by identifying a temporal span 
of spectral anomaly relative to its natural variability (Coops et al., 2020; 
Hermosilla et al., 2019; Schug et al., 2018; Villarreal et al., 2016; Yin 
et al., 2020; Zhu et al., 2019). A satellite-based disturbance investigation 
project is typically comprised of two components: 1) mapping of 
disturbed region and timing (Cohen et al., 2018; Huang et al., 2010; Zhu 
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et al., 2020); 2) characterizing disturbance agents (Baumann et al., 
2014; Kennedy et al., 2015; Zhang et al., 2022), severity (Rodman et al., 
2021), or recovery (White et al., 2022). This paper is concerned with the 
first component, the process of detecting disturbances, which provides 
essential base maps for downstream disturbance characterization. 

To date, numerous algorithms have been developed to map distur-
bances from Landsat time-series dataset (Zhu, 2017). COntinuous 
monitoring of Land Disturbances (COLD), the latest version of the 
Continuous Change Detection and Classification (CCDC) algorithm 
tailored for land disturbance mapping, is a representative approach that 
makes it feasible to detect a variety of land disturbances based upon all 
available Landsats 4–8 data (herein named as “dense time series”, Zhu 
et al., 2020). COLD or all CCDC-like algorithms successively compare 
model forecasts and actual observations and identifies breaks if the 
discrepancies between new observations and model predictions persist 
(Zhu et al., 2020; Zhu and Woodcock, 2014a), which have been widely 
used for mapping coastal tidal wetland dynamics (Yang et al., 2022), 
land disturbance agents (Qiu et al., 2022), nighttime light change (Li 
et al., 2022) and forest dynamics (Healey et al., 2018). 

While COLD and other popular time-series approaches, such as 
LandTrendr (Kennedy et al., 2010), BFAST (Verbesselt et al., 2010), and 
VCT (Huang et al., 2010), have greatly enhanced our ability for mapping 
land change, these methods adhere to using pixels as independent 
spatial units for analysis, focusing on capturing obvious temporal 
anomaly or breaks based upon single-pixel-based time series. The major 
downside for such-like approaches is that they often suffer a high 
omission error rate for the myriad of subtle disturbances (e.g., insect, 
drought) that are characterized by insignificant spectral change lower 
than their pre-defined magnitude threshold (Cohen et al., 2017; Ye et al., 
2021b; Zhu et al., 2019). Even for the dramatic disturbances that lead to 
land cover conversion (e.g., agricultural expansion and urbanization), 
per-pixel approaches may fail to delineate the full extent of a 
disturbance-affected region that often presents heterogeneous change 
owing to numerous geographically varying factors such as severity, pre- 
disturbance conditions, and topography. Spatial-contextual informa-
tion, such as patch size and change adjacency, could provide new 
powerful metrics for discriminating subtle disturbances and enhance 
detection completeness through a consideration of spatial autocorrela-
tion for event-induced spectral change. To incorporate spatial infor-
mation into temporal analysis, several studies applied a simple spatial 
filtering for post-processing disturbance maps (Pasquarella et al., 2017; 
Ye et al., 2021b) but often only achieve a small degree of map refine-
ment (Ye et al., 2021b). More sophisticated is a group of spatial-window 
techniques that uses a focal operation to preprocess each original sat-
ellite image and then applies the time-series algorithm to the pre-
processed images (Hamunyela et al., 2016; Meng et al., 2021). For 
example, Hamunyela et al. (2016) normalized each pixel by the median 
value of the neighboring pixels whose vegetation index values are above 
the 90th percentile of all pixels within a spatial window; such spatial 
normalization could significantly reduce signal noises from vegetation 
phenology for the subsequent time series analysis and advance the 
timing of capturing deforestation signals (Hamunyela et al., 2016). This 
study was targeted at forest disturbance, and the window size was 
determined through sensitivity analysis (Hamunyela et al., 2016); 
however, a single predefined spatial window size may not be sufficient 
for modeling generic land disturbances at a national or continental 
scales, which often manifests a diversity of cover types, spatial patterns 
and extents. 

Object-Based Image Analysis (OBIA) is an image processing frame-
work which divides an image into clusters of adjacent pixels based on 
their spectral similarities, i.e., image objects (IOs), and then uses these 
IOs as the analytic unit (Blaschke, 2010) for the tasks such as image 
classification (Dronova et al., 2015; Gudex-Cross et al., 2017; Zhang 
et al., 2014, 2018), continuous surface parameter estimate (Laurent 
et al., 2013; Roelfsema et al., 2014), and pansharpening (Zhang et al., 
2021). IOs can be used to represent an almost unlimited range of 

phenomena (Bian, 2007), from meaningful landscape entities to a lower- 
level grouping of spectrally similar pixels such as superpixel (e.g., Csil-
lik, 2017), thereby leading to more flexibilities for modeling complex 
geographic phenomenon than the spatial-window techniques. OBIA first 
gained its popularity among the fine-resolution (< 5 m) applications 
under an H-resolution situation (Cleve et al., 2008; Holt et al., 2009), 
where landscape units of interest are significantly larger than the reso-
lution cells (Strahler et al., 1986). Later studies utilized OBIA for 
medium-resolution images such as Landsat (Duveiller et al., 2008; Jobin 
et al., 2008; Vieira et al., 2012) and Sentinel-2 (Belgiu and Csillik, 2018; 
Djerriri et al., 2020), owing to its superiority for incorporating spatial 
properties such as object size and texture. These OBIA studies were 
mainly employed for land cover classification tasks, defining their ob-
jects as landscape entities. Nevertheless, land disturbances not only alter 
landscape units in terms of their biophysical properties, but also – and 
more often – change their spatial borders. Therefore, it is unlikely to 
apply an object-oriented paradigm based on land cover objects for 
mapping land disturbances, unless targeted landscape boundaries 
remain unchanged during the change process (e.g., Yin et al., 2018). 

Alternatively, we could choose change objects as our analytic unit, 
rather than land cover objects. The consequences of a disturbance event, 
such as altering land condition, composition, soil property, or cover 
types, are often viewed as a spatial and temporal continuum (Kimmins, 
2004). If a pixel is experiencing spectral changes related to a distur-
bance, it is reasonable to expect that its neighboring pixels present 
similar spectral changes in a synchronized manner, constituting a 
change object. This definition resolves the issue of changing object 
boundaries over time and facilitates integration of object-level change 
features, such as change object size and pre-change land types, for 
improved disturbance detection. 

Closing this gap, the change-object approach embarks on a similar 
challenge in GIScience concerning the representation of complex 
spatiotemporal objects across multiple spatiotemporal scales (Blaschke 
et al., 2014; Yuan, 2001). Particularly, enormous spectral details have 
been brought by within-event change heterogeneity, as well as 
increasing temporal density and spatial resolution of satellite images, 
calling for a hierarchical, multi-scale framework to decompose the 
spatiotemporal complexity. Fig. 1 conceptualizes a three-level hierarchy 
for perceiving a change process from a medium-resolution time-series 
dataset typically with a revisiting cycle of 3–8 days. Change superpixels 
(Level III) refer to a grouping of pixels that share common spectral 
change in a short interval (e.g., a month) under the effects of a process, 
representing the most detailed spatiotemporal object representation. 
The adjacent change superpixels within the same time intervals are 
further aggregated into a change patch (Level II), forming a continuous 
region affected by the change process at a coarser spatial scale. A 
change-process object (Level I) is the total area affected by the change 
process, which sometimes necessitates an ensemble of change infor-
mation from several time periods (such as one to several years). Change- 
process object could be created by segmenting intermediate change 
measurement maps at an interval of multiple years (Gómez et al., 2011) 
or connecting adjacent pixels from annual pixel-based disturbance maps 
(Hermosilla et al., 2015; Kennedy et al., 2015; Qiu et al., 2022), and was 
commonly employed as the object unit for the disturbance character-
ization. On the contrary, change objects at a fine spatiotemporal scale 
are more practically useful at the detection stage which aims at delin-
eating accurate spatial and temporal change boundaries, particularly to 
the CCDC-like approaches that were established to provide intra-annual 
change information. Besides, a fine temporal grain for monitoring can 
help reduce the chance of misidentifying a mixed-disturbance object and 
holds great promise for timely alerting in a near real-time monitoring 
task. To our best knowledge, there are no established approaches yet for 
analyzing change objects at a fine temporal scale (e.g., monthly). Spe-
cifically, two key impediments to such methodological development are: 
1) lacking a way for extracting change objects from a time-series 
perspective of perceiving a spectral change relative to its historical 
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variation; 2) lacking a mechanism for intelligently integrating cross- 
scale information into the change-decision process. 

In this study, we will describe a novel spatial-temporal algorithm for 
improved detection of land disturbances from Landsat time series 
dataset, called Object-based COntinuous monitoring of Land Distur-
bance (OB-COLD). The basic idea of OB-COLD is that we discretize 
continuous time into a series of equal time intervals as the analytical 
unit, i.e., time slices, allowing for a generation of image-like change 
snapshots at a fine temporal scale; then apply an OBIA procedure to 
delineate change regions within each snapshot by combining both 
change-superpixel and change-patch information. In what follows, we 
will introduce calibration and validation datasets (Section 2), provide 
technical details for OB-COLD (Section 3), present both quantitative and 
qualitative evaluation (Section 4), and finally discuss key issues in 
incorporating spatial and thematic information, validation, downstream 
disturbance characterization, etc. (Section 5). 

2. Study area, datasets, and evaluation 

2.1. Study area and datasets 

Our algorithm tests were performed based on the CONUS (Conter-
minous United States) region. Two openly accessed CONUS-wide 
disturbance plot datasets, i.e., Cohen’s dataset (Cohen et al., 2016) 
and LCMAP reference dataset (Pengra et al., 2020), were chosen as our 
reference dataset for model calibration and evaluation, which were used 
in multiple land change related studies (Cohen et al., 2016; Stehman 
et al., 2021; Ye et al., 2021a; Zhu et al., 2020). 

In this study, detectable disturbances are defined as any discrete 
event that occurs beyond its natural variability of land surfaces on a 
decade scale; the spectral signals must be evident in both Landsat image 
chips or Landsat-based time series. Both subtle (e.g., stress) and dra-
matic disturbances (e.g., fire, harvest, and hydrology) are considered as 
our detection targets; on the contrary, climate variability and agricul-
tural practice, which often induces ephemeral spectral fluctuation, are 
not counted within our detection scope. Based upon the Land Change 
Monitoring, Assessment and Projection (LCMAP) project and other past 
land disturbance studies (Pengra et al., 2020; Qiu et al., 2022; Zhu et al., 
2020), the seven focused disturbance types in this paper were fire, har-
vest, hydrology, mechanical, stress, debris, and other. For a detailed 

definition of these seven disturbance types, we refer the readers to 
Table 1 in Qiu et al. (2022). 

Cohen’s dataset (Cohen et al., 2016) was mainly used for model 
calibration in this study because this dataset adopted a forested-oriented 
sampling strategy (forest occupy 40% of the sample pool) and hence had 
less representativeness as a validation set for a generic land disturbance 
mapping. Cohen’s dataset was generated from 180 Thiessen Scene Areas 
(TSAs, designed to provide non-overlapping Landsat-like frames for a 
convenient computation of unbiased estimator) polygons, which were 
sampled with a focus on the forested area from a total of 442 TSAs. 
Within each of the 180 TSAs, 40 Landsat plots were selected based on a 
simple random strategy, making up an initial sample set of 7200 Landsat 
plots. The disturbance years ranging from 1982 to 2012 were inter-
preted for each plot using a visualization software called TimeSync 
(Cohen et al., 2010). For more processing details, we refer readers to 
(Cohen et al., 2016; Zhu et al., 2020). A total of 6491 plots (blue dots in 
Fig. 2) remained after eliminating those sample plots that did not have 
enough clear sky observations (< 24) or were too difficult to interpret. 
Admittedly, Cohen’s dataset was designed with a focus on the forested 
area, possibly causing the resultant model to yield more weights on 

Fig. 1. A three-level hierarchy of land-change objects from a spatiotemporal domain.  

Table 1 
A summary of land cover types and major disturbance agents for pilot sites.  

Evaluation site/tiles Dominant land cover 
types 

Major disturbances 

New England 
(h30v6) 

Tree cover, developed, 
wetland 

Gypsy moth outbreak, urban 
expansion, hurricane 

Corn Belt Plains 
(h21v8) 

Cropland, developed Urban expansion, agricultural 
practice 

Mississippi River 
Lowlands (h21v15) 

Tree cover Harvest, forest thinning 

Western Great Plains 
(h14v6) 

Grass, shrub, cropland Drought 

Rocky Colorado 
(h11v9) 

Tree covers, cropland, 
grass, shrub 

Beetle disturbances. 
agricultural practices 

Cascades Plateau 
(h4v2) 

Tree cover, grass, 
shrub 

Logging, forest fire 

West California 
(h2v8) 

Cropland, grass, 
developed 

Wildfires, agricultural 
practices 

South Florida 
(h27v19) 

Wetland (mangrove) Tornado  
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forest disturbance detection. This problem could be alleviated by our 
cover-specific model establishment (see section 3.2.3): forest distur-
bance sample plots were only used to tune the stable model for three 
cover types with relatively small natural spectral variability (i.e., forest, 
water, and developed), which did not affect the model calibration for the 
other highly dynamic cover types (namely “fluctuated model”), such as 
cropland and grass. 

Quantitative evaluation was conducted based on land change refer-
ence sample plots from the LCMAP project (Pengra et al., 2020), which 
were sampled from 30-m Landsat pixels in the CONUS ARD grid system. 
The LCMAP sample plots were generated from cluster-based sampling, 
in which each pixel was a cluster of 34 observation years of this pixel 
(Stehman et al., 2021). We chose LCMAP reference dataset rather than 
Cohen’s dataset for validation as LCMAP reference dataset have no bias 
for specific land cover types, while Cohen’s dataset was mainly located 
at forest-dominated TSAs. While LCMAP reference dataset was devel-
oped with a high quality following a rigorous protocol, we observed two 
primary issues causing its discrepancies with our detection scope: 1) 
disturbance omissions for ephemeral droughts that also induce a large- 
area spectral change from Landsat image chips as well as temporal 
break in the time-series profile (see the example of Fig. S1 in the sup-
plementary), especially in semi-arid regions; 2) disturbance commis-
sions caused by a spatial misalignment between the sample location and 
the disturbance extent (often at the edge of a large disturbance patch), 
where the sample pixels do not present an obvious change signal in the 
time series but misidentified as disturbances in the LCMAP reference set 
(see the example of Fig. S2 in the supplementary). Given these issues, we 
randomly selected 3000 sample plots from the 24,971 total sample plots 
and manually corrected sample plots from the convergence of visual 
evidence available in both temporal profiles and Landsat image chips, 
backed up by referencing historical high-resolution Google imagery. We 
excluded 120 sample plots (4.0%) that were extremely difficult to 
interpret due to too frequent spectral variation (mostly in semi-arid 

regions, see the example Fig. S3). As a result, 2880 time-series sample 
plots were remained for the final model evaluation, resulting in a total of 
97,920 validation cases for 34 years, which include 1230 disturbance 
years and 96,690 non-disturbance years. A total of three rounds of 
manual inspection were given to all validation cases, ensuring their 
correctness and consistency with the calibration dataset. 

All Landsat ARD Collection 1 surface reflectance products between 
1984 and 2021 (38 years) were downloaded for analysis. The Landsat 
ARD products gridded all available Landsats 4–8 as tiled, georegistered, 
and atmospherically corrected products defined in a common equal area 
projection (Dwyer et al., 2018). To facilitate model calibration and 
evaluation, we cropped a smaller time-series chip (53*53 pixels) for 
each reference plot. The width of 53 pixels was determined by covering 
99% of patch-level change objects from running the default models for 
four pilot tiles. 

2.2. Model calibration and evaluation 

F2 was chosen as the objective function for the model calibration. 
Combining the producer’s accuracy (PA, a.k.a., recall) and the user’s 
accuracy (UA, a.k.a., precision), a general form of F-score can be 
denoted as (Baeza-Yates and Ribeiro-Neto, 1999): 

Fβ =
(
1+ β2)*

UA*PA
β2*UA + PA

(1) 

F2 set β = 2 such that PA is considered twice as important as UA, 
motivated by that under-detection is more critical than over-detection 
for the ensuing disturbance analysis. There is almost no effective way 
for re-identifying a disturbance region if it is missed from the detection 
stage, while it is often methodologically possible to eliminate commis-
sions through a spatial-contextual post processing such as sieving filter 
(Ye et al., 2021b) or through disturbance agent classification (Zhang 
et al., 2022). The calculation of UA and PA for the cluster sampling is the 

Fig. 2. Locations of 6491 calibration plots, 2880 validation plots, and pilot testing tiles. Cover map source: 2001 Land Change Monitoring, Assessment and Projection 
(LCMAP) primary land cover product (Version 1.2, Brown et al., 2019; Xian et al., 2022). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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same as that from the random sampling strategy (Stehman et al., 2021). 
For model evaluation, we chose the performance metrics that were 

commonly used in previous disturbance detection studies (Galbraith 
et al., 2019; Solórzano and Gao, 2022; Ye et al., 2021a; Zhu et al., 2020) 
concerning communication, i.e., F1 score, F2 score, user’s accuracy (UA) 
and producer’s accuracies (PA). To our knowledge, COLD is the only 
algorithm targeted at medium-resolution generic land disturbance 
detection and hence will be used as the primary baseline for comparative 
analysis. The default COLD uses change probability P = 0.99 based on its 
best-balanced accuracy (i.e., F1 score) (Zhu et al., 2020). To make it 
consistent with OB-COLD’s calibration manner, we will also report the 
COLD performance with P = 0.95, which achieved the best F2 score 
based on the same calibration dataset (see Table S1 in the 
supplementary). 

In addition to quantitative evaluation, the qualitative assessment 
was performed for eight pilot Landsat ARD tiles (see the black hollow 
rectangle in Fig. 2), representing a broad range of ecoregions and 
disturbance agent types. Major land cover patterns and disturbance 
agents for these eight tiles were summarized in Table 1. The evaluation 
was accomplished by visually assessing OB-COLD disturbance maps in 
conjunction with the COLD disturbance maps and high-resolution 
Google Earth imagery (Section 4.2). 

3. Method 

OB-COLD consisted of three steps (Fig. 3). First, OB-COLD applies 
COLD to analyze per-pixel spectral change history and save change 
magnitudes at a regular temporal interval (i.e., time slice). Second, OB- 
COLD reorganizes these per-pixel change magnitudes into a sequence of 
image-like temporal snapshots and applies object-based change analysis 
to identify change regions for each snapshot. Finally, OB-COLD re-
produces temporal segment characterization as change records based on 
the new spatially indicated breaks. It is worth mentioning that Steps 1 
and 2 focus on the detection of general change processes including both 
land disturbances and other ecological processes such as natural re-
covery; land disturbance regions will be sorted out by applying a rule- 
based strategy in Step 3. 

3.1. Temporal change measurement 

OB-COLD adapts COLD (Zhu et al., 2020), a well-established algo-
rithm for dense Landsat time-series, to analyze per-pixel spectral change 
history as its first step. Same to COLD, OB-COLD uses the Quality 
Assessment band generated by the Fmask algorithm (Zhu and Wood-
cock, 2012) to screen out the initial cloud, cloud shadow, and ice/snow, 
and then applies Tmask (Zhu and Woodcock, 2014b), a time-series- 
based outlier removal technique, to further remove remaining noises. 
The only modification is that OB-COLD generates two extra outputs from 
the COLD algorithm at a regular day interval, i.e., (1) the representative 
change magnitude and (2) its associate change date. For a time series {xt, 
t ∈ T} (T is the set of image acquisition dates), COLD identifies a spectral 
break if 1) an observation xt has a change magnitude (CMt), the mini-
mum squared norm of standardized change vectors (CV) among a peek 
window (ψ) of k consecutive observations since a Julian date t, greater 
than a change threshold from the chi-square distribution at a probability 
of P (modified from Eq. 8 in (Zhu et al., 2020)): 

CMt = min
x∈ψ

{
‖CVx‖

2 }〉χ2
P(5) (2) 

2) a mean included angle (βt) between the ith and (i + 1)th consec-
utive observations within the peek window is lower than 45

◦

which 
excludes the noisy signals that have a large variation of change direction 
(Eq. 9 in (Zhu et al., 2020)) 

βt =
1
k
∑k− 1

i=1
βi,i+1 < 45◦ (2) 

OB-COLD outputs a representative change magnitude for each time 
slice at a per-pixel level to indicate the overall change likelihood for the 
time slice, irrespective of break detection. Given a time slice ∅, its 
representative change magnitude (CM∅) combining the two decision 
intermediates, CMt and βt, is defined as: 

CM∅ = max
tϵ∅

(CMt*F(βt) ) (3)  

where F(βt) is a squashing function for penalizing those CMt that have βt 
larger than the optimal mean included angle threshold given by (Zhu 
et al., 2020), i.e., 45

◦

, 

Fig. 3. The three-component workflow of OB-COLD. COLD: COntinuous monitoring of Land Disturbance; OB: Object-Based.  
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F(IAt) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, βt < 45◦

90 − IAt

45
, 45◦

≤ βt ≤ 90◦

0, βt > 90◦

(4) 

Besides, the ordinal date associated with each CM∅ (i.e., change 
date) is saved to the disk during this procedure as well, which will be an 
essential component for the follow-up segmentation procedure as well as 
the new break date retrieval. It is noteworthy that the OB-COLD also 
looks for change magnitudes and dates in a look-backward manner 
during the process of detecting the start of a temporal segment after the 
initialization stage is determined (see Fig. 4). The look-backward setting 
could improve the identification of secondary disturbances occurring 
shortly after the first disturbance (see the example shown Fig. S4 of the 
supplementary material) which are often missed for the detection during 
the normal look-forward detection process due to a lack of an estab-
lished time-series model. 

The temporal interval of a time slice was empirically determined as 
the average days needed for accumulating five observations. With an 
assumption of 50% cloud/shadow chance (Zhu et al., 2020), five tem-
poral observations ensure a probability of over 95% (i.e., 1 − 0.55 =

96.88%) for acquiring at least one clear observation within this interval. 
Landsat ARD dataset ideally has a temporal density of 8 days with two 
sensors, however, the overall average density since 1984 is between 
eight to 16 days due to single-sensor operation before 2000 as well as the 
Landsat 7 SLC-off issue. We chose a middle density, i.e., 12 days, and 
thus the day interval for a time slice was defined as 12 days * 5 obser-
vations = 60 days. 

Once COLD is finished and regular-interval change measurements 
are generated for all pixels, OB-COLD reorganizes these per-pixel change 
magnitudes and dates into image-like snapshots indexed by time (see the 
examples of Fig. 5A and B). Given that a change patch might be broken 
into two consecutive snapshots due to a variety of factors such as cloud/ 
shadow and SLC-off issues, change measurements from the earlier 
snapshot were used to fill “NA” values in the current change snapshot, 
with a goal of generating more spatially contiguous patches. Hence, the 
change dates in Fig. 5B also include the dates prior to the current pro-
cessing time slice. 

3.2. Object-based change analysis 

Object-based change analysis was applied to process time-stamped 
change magnitude snapshots following a pipeline of segmentation, 
property extraction, and change decision. 

3.2.1. Segmentation 
This sub-step targets extracting two-level candidate change objects 

from each change measurement snapshot. It is practically difficult to 
directly extract meaningful change objects as some disturbance sites 
have considerable internal variability, therefore we applied an over- 
segmentation to generate a lower level of the object representation as 
change superpixels, pertaining the best boundary information. To derive 
change superpixels, OB-COLD first applies a gaussian filter with a kernel 
size σ = 1 on a change-magnitude snapshot, defines the initial seed 
pixels as the pixels with a change magnitude higher than χ0.90

2 (5), and 
then implements a mask-based Flood Fill segmentation (Bradski and 
Kaehler, 2000) to generate change superpixels. The pixel at (x,y) within 
the 8-connectivity neighborhood is considered to belong to the super-
pixel of the seed pixel if its change magnitude (CM∅) and date (CD∅) 
meet the below conditions: 

(1 − λ)*CM∅(xseed, yseed) ≤ CM∅(x, y) ≤ (1+ λ)*CM∅(xseed, yseed) (5)  

|CD∅(x, y) − CD∅(xseed , yseed) |〈time slice interval (6) 

λ is a factor that determines a fixed range centered at the change 
magnitude of seed pixel to connect neighborhood pixels; λ = 0.4 and λ =
0.3 have the same F2 from the parameter sensitivity test (Table S1 in the 
supplementary), and λ = 0.4 was chosen due to its better efficiency 
(higher λ means less oversegments). Eq. (6) aims to exclude those pixels 
that have a change date interval longer than the time slice length with 
seed pixels, which were brought by the preprocessing of filling NA 
values using the earlier snapshot. Once a filling is finished, a mask will 
be updated by adding the newly filled pixels to speed up the processing 
for the next seed, until all seeds are processed. Admittedly, the Flood Fill 
algorithm is not a typical superpixel segmentation approach; we chose 
the Flood Fill because it exhibited the highest accuracy compared to the 
other two popular superpixel algorithms, including Simple Linear Iter-
ative Clustering (SLIC) (Achanta et al., 2012) and watershed (Neubert 
and Protzel, 2014) (Table S1 in the supplementary). This might be 
because SLIC and watershed algorithms were originally designed for 
high-resolution color images which are not optimal for segmenting 30-m 
change snapshots. 

After the Flood Fill segmentation is finished, change-patch objects at 
a broad spatial context are produced by merging adjacent change 
superpixels, with a hypothesis that adjacent pixels presenting spectral 
change within a short time are under the same change process regardless 
of their distinct inter-group change magnitudes (see the example of 
Fig. 5D). The two levels of change objects will be used to extract object 
properties. We tested detection performance under different scale stra-
tegies: 1) change superpixel only; 2) change patch only; 3) change 
superpixel and patch. The combination of change superpixel- and patch- 

Fig. 4. Bidirectional change magnitude outputs and break identification in OB-COLD: OB-COLD saves intermediate change magnitudes from the COLD algorithm for 
each time slice (i.e., a regular temporal interval) in both forward and backward direction, after an initialization window is established. COLD: COntinuous monitoring 
of Land Disturbance; OB: Object-Based. 
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level information showed the best F2 (see Table S1 in the 
supplementary). 

3.2.2. Object-level property extraction 
OB-COLD assigns three object-level change properties to each 

candidate superpixel, relating to 1) spectral, 2) spatial, and 3) thematic 
features. The spectral property for a candidate superpixel is calculated as 
the average change magnitude of its membership pixels, indicating the 
overall spectral change intensity for this superpixel. 

The spatial property is derived as the size of the change patch that a 
superpixel belongs to, which indicates the concurrent change area 
occurring for a time slice. Rather than the superpixel-level objects that 
are not meaningful geographic objects due to the over-segmentation 
process, patch-level objects can provide a broad view for concurrent 
change as evidence for a real change process against noises which usu-
ally present a random speckle pattern in both space and time. 

The thematic property, as an optional object-level property for OB- 
COLD, requires a pre-existing land-cover map as the input (see the 
dash line in Fig. 2). COLD change records from the first step “temporal 
change measurement” define an intercept, a slope and three sets of 
harmonic components for each temporal segment: 

ρ̂i,t = a0,i +
∑3

k=1

{

ak,icos
(

2kπ
T

t
)

+ bk,isin
(

2kπ
T

t
)}

+ c1,it (7)  

where ρ̂i,t is the predicted reflectance for the ith Landsat Band at Julian 
date t, a0, i is the intercept coefficient, ak, i and bk, i are kth order seasonal 
harmonic coefficients, c1, i represents the slope coefficient. To speed up 
processing, we selected 21 annual COLD predictors derived from COLD 
change records as inputted features for classification, consisting of seven 
overall predicted surface (a0, i + c1, it07− 01− year, i = 1, 2, …, 7th Bands) 
and 14 intra-annual coefficients of the time segment representing 1st 
order seasonality (a1, i, year and b1, i, year, i = 1, 2, …, 7th Bands). OB- 
COLD first builds a localized random-forest model by coupling a 
single-year pre-existing map with the annual COLD predictors for the 
year of the map. For this study, we used 2001 LCMAP land-cover 
product as the seed map, following the LCMAP classification system 
which defines eight primary land cover types (Brown et al., 2019), i.e., 
(1) tree cover, (2) developed, (3) wetland, (4) grass/shrub, (5) waterbodies, 

(6) wetland, (7) ice and snow, and (8) barren. OB-COLD generates a total 
of 20,000 training sample pixels is generated following the sampling 
protocol provided in Zhu et al. (2016), applies the random-forest model 
to predict yearly land cover maps, and finally extracts the dominant pre- 
change cover type for each superpixel by overlaying the superpixel maps 
with the classified land-cover map at one year prior to its time slice (∅), 

3.2.3. Object-based change decision 
To a superpixel k at a time slice ∅, the general change decision 

function that adjusts the object-level change magnitude by the object 
size is denoted as: 

CMag∅,k*scale factor > χ2
P(5) (8)  

where 

scale factor = 0.95+
(
log10N∅,k

)
*S (9) 

CMag∅,k is the average change magnitude of a change superpixel. The 
scale_factor is a function of the object size of its associated patch size (N∅, 

k, unit: pixel number). The intercept “0.95” indicates that OB-COLD only 
decreases the average change magnitude for the single-pixel change (N∅, 

k = 1) by 5%, which ensures a good performance in a heterogeneous 
environment where a change entity is small-sized and even smaller than 
Landsat pixel resolution (i.e., L-resolution). The larger change patch 
leads to a higher scale_factor, hence a lower average change magnitude is 
needed to hit the change threshold. P and S are two key OB-COLD pa-
rameters requiring careful calibration. P determines the chi-square 
change threshold χP

2(5) (OB-COLD and COLD both use five spectral 
bands for calculating change magnitudes, so the degree of freedom is 5). 
S is a size factor that controls the weight of change patch size (N∅, i) in 
the decision function: when S = 0, only the average change magnitude is 
considered; a larger S yields more weights to the concurrent change area 
in the decision function. 

This study will examine OB-COLD under two parameterization 
modes: the unimodal and the bimodal OB-COLD. The unimodel OB- 
COLD is implemented in the absence of an existing land-cover map, 
which applies a single set of model parameters (P, S) to all superpixels. 
Our grid-searching parameter test shows that the parameter set (P =

Fig. 5. An example site (Lat: 41.4761; Lon: − 88.0881; ARD tile: H021V008) for illustrating several key steps within object-based change analysis for processing a 
time slice (05/31/2003–07/30/2003), coupled with its related Landsat true color composite chips (the red rectangles highlight the images collected within the time 
slice). A) the change magnitude snapshot and B) the change date snapshot; C) the change superpixel obtained by Flood Fill segmentation; D) the change patch 
generated by merging adjacent superpixels; E) the final change map through object-based change decision which could eliminate the superpixels with extremely low 
change magnitudes. ARD: Analysis Ready Data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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0.95, S = 0) is optimal under the unimodel situation given by its best F2 
score (Fig. S5 in the supplementary). 

The bimodel OB-COLD (the default option) additionally requires a 
seed cover map for generating object-level thematic properties to guide 
applying different model parameter specifications. The two-strata land 
cover system (“fluctuated” vs “stable”) was designed to achieve a bal-
ance between adequate per-stratum sample number and acceptable 
model specificity based upon Disturbance-to-Noise Ratio (DNR). DNR is 
defined as the ratio of the disturbance superpixels confirmed by the 
reference sample plots to the noisy superpixels (i.e., superpixels in those 
no-disturbance years). Noisy superpixels (or commission error objects) 
are often associated with regional change processes that belong to nat-
ural variabilities, such as climate variability, and ideally, present lower 
change magnitudes or smaller change patches in their attribute scatter 
plot. The fluctuation model is designed for the superpixels whose major 
pre-change categories have relatively low DNR: cropland, grass/shrub, 
water, ice/snow, and barren (Fig. 6D-E); the lower DNR indicates a higher 
proportion of noisy superpixels and therefore higher spectral fluctua-
tion, suggesting a conservative model parameterization is necessitated 
for keeping a low commission error rate. On the other hand, the stable 
model is applied to identify disturbances occurring on the rest three 
cover types, i.e., tree cover, developed, and wetland (Fig. 6A-C), which has 
been also echoed by the past studies in forest regions (Ye et al., 2021b) 
or in wetland areas (Yang et al., 2022), suggesting a more sensitive 
change parameterization for these cover types. 

Under the bimodel OB-COLD, for a superpixel object k in a time slice 
∅ with its known pre-change category LC∅, k, OB-COLD identifies it as 
the change superpixel when: 

CMag∅,i*
(
0.95+ log10N∅,k*Ss

)〉
χ2

Ps
(5), if LC∅,k ϵ stable stratum (10)  

CMag∅,i*
(
0.95+ log10N∅,k*Sf

)〉
χ2

Pf
(5), if LC∅,k ϵ fluctuated stratum (11)  

where (Ps,Ss) and (Pf, Sf) are the two parameter sets respectively for the 
stable and fluctuated models. To obtain the best parameter set for each 
model, we separated our calibration change sample plots into these two 
strata based on their pre-change categories predicted from the random- 
forest model (Section 3.2.2) and performed a grid-searching parameter 
test for each group. The grid-searching results (Fig. S5 in the supple-
mentary) suggested the parameter set (Ps = 0.95, Ss = 0.1) was the best 
for the stable model, while (Pf = 0.99, Sf = 0.05) was the optimal for the 
fluctuated model due to its highest F2 score. 

3.3. Change records reconstruction and disturbance extraction 

For the final step, OB-COLD generates new change records that have 
a consistent temporal variable set with the standard COLD (Zhu et al., 
2020). OB-COLD first produces new breaks at a per-pixel level by linking 
resultant change maps from the second step with change date snapshots, 
and then recursively selects the breaks that have a day interval of at least 
365 days with the last break, concerning that each temporal segment 
should have at least one-year interval for an efficient model fitting. As 
followed, a two-step protocol is applied to eliminate outliers: 1) Tmask 
(Zhu et al., 2019) and 2) non-consecutive outlier removal with a change- 
probability threshold of 0.99999 based on LASSO (Least Absolute 
Shrinkage and Selection Operator) model fitting. An 8-coefficient LASSO 
regression is built using the remaining observations to produce the final 
harmonic coefficients for each temporal segment. 

The disturbance extraction in OB-COLD follows the same physical- 
rule-based approach described in Zhu et al. (2020). Given that OB- 
COLD additionally searches breaks in the looking-back procedure and 
may cause commission errors, OB-COLD introduces the second non- 
disturbance break type called “flipping break” besides regrowth- 
related breaks. Flipping breaks represent a type of break linked to the 
end of a disturbance process, which has an opposite spectral change 
direction from the previous disturbance. More details on flipping breaks 

Fig. 6. Object-based attribute scatter plot and per-category Disturbance-to-Noise Ratio (DNR) based on calibration sample plots. Disturbance superpixels are those 
superpixels that intersect the pixel location of a reference sample and coincide with its disturbance year (correct objects), while noisy superpixels are those 
superpixels that intersect the sample pixel locations but occur in the no-disturbance years (commission error objects). DNR is the ratio of disturbance superpixel 
number to noisy superpixel number. The number in the parathesis within each sub-title indicates the total number of candidate change superpixels. 
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will be given in Section S2 in the supplementary material. 
The COLD algorithm was written in the C language wrapped with 

Python API, and other components for OB-COLD were written in python; 
the open-source package is freely downloadable from https://github. 
com/GERSL/pycold. 

4. Results 

4.1. Quantitative assessment 

The quantitative evaluation based on 2880 reference plots (Fig. 7) 
illustrates that the bimodel OB-COLD achieved the best F1 (0.666) and F2 
accuracy (0.724). While its UA was similar to the COLD with the default 
change probability (COLD–t99) (58.7% vs. 57.8%), the bimodel OB- 
COLD yielded a significantly higher PA than the default COLD by 
16.3% (76.9% vs. 60.6%), indicating that the primary enhancement of 
the bimodel OB-COLD was at reducing omission errors compared to the 
default COLD. Without considering pre-change cover types, the unim-
odel OB-COLD showed similar PAs with the bimodel (75.7% vs. 76.9%), 
however, at an expense of a much lower UA (46.5% vs 58.7%). As both 
were calibrated under F2 objective, the unimodel OB-COLD achieved 
12.2% F2 increase compared to COLD – 95, indicating that the object- 
based components other than thematic components, such as segmenta-
tion procedure and object-level change decision, also greatly contribute 
to the accuracy improvement. The default COLD exhibited the best 
balance on UA and PA because it was the only approach that was cali-
brated based on F1, though its F1 was still lower than the binary OB- 
COLD. The COLD under the best F2, i.e., COLD–t95, had the lowest F1 
and F2 partly due to its extremely high commission errors (UA = 31.5%). 

Disturbance detection accuracies on the individual cover type 
(Fig. 8) shows a large performance variation among different pre-change 
land status. Disturbance detection on tree cover (mostly relating to forest 
disturbances) presented the highest performance among all cover types, 
with relatively balanced UA and PA: the binary OB-COLD achieved 
>80% on both PA and UA. The types cropland and grass & barren 
generally showed the lowest detection performance because of their 
high disturbance commissions (no approaches could achieve >50% UA). 
Water/ice and wetland presented high PA (~80%) and moderate UA 
(~60%) (except COLD-t99 on wetland, PA = 61.4% and UA = 77.3%). 
For cross-approach comparison, the bimodel OB-COLD obtained the 
highest PA for developed (68.0%), tree cover (82.3%), water/ice (88.2%), 
and wetland (88.0%), while the unimodel OB-COLD achieved the highest 
for the rest two (cropland: 78.1%; grass & barren: 75.7%). COLD–t99 had 
the highest UA for most cover types (developed: 60.3%; cropland: 44.1%; 
grass & barren: 43.8%; tree cover: 86.7%; wetland: 77.3%), except for 
water/ice (the bimodal OB-COLD: 65.2%). 

4.2. Qualitative assessment 

The qualitative assessment shows that the default COLD approach 
(COLD–t99) presented under-detection for beetle outbreak, forest har-
vest, construction, and cropland conversion (see the example regions 
Fig. 9A, D, E, and G). COLD-t99 missed the detection for some pixels of 
the newly built solar panel site possibly because the transition from bare 
land to solar panels did not always present significant spectral change 
from their temporal profile, while the OBIA procedure in OB-COLD 
enabled the capture of a more complete geometry for the new solar 
panel site as it considers spatially concurrent change. The COLD 
approach under the F2 objective (COLD–t95) presented more commis-
sion errors and salt-and-pepper noise for semiarid regions (Fig. 9F, H), 
and exhibited some omission errors/partial detection for wetland con-
dition change induced by the Irma hurricane (Fig. 9C). Compared to the 
pixel-based approach, the unimodel and the bimodel OB-COLD gener-
ally produced more complete disturbance patch geometry with fewer 
omission errors. The bimodel OB-COLD performed better than the 
unimodel for the subtle disturbances such as beetle outbreak (see Fig. 9 
B). 

4.3. Detection rates by disturbance agents 

The detection rates (i.e., PA) were also evaluated against six primary 
disturbance agents (Fig. 10). Generally, harvest reached higher accu-
racies (COLD-t95, unimodel, the bimodel OB-COLD had over 80% PA), 
while a lower detection rate was shown for fire and stress (all approach 
obtained <70% PA) possibly due to their relatively higher proportion of 
subtle-change cases (such as understory fire and insect disturbances). 
For cross-approach comparison, the default COLD (COLD–t99) exhibited 
the lowest PA because the default COLD was calibrated for a balanced 
accuracy. The unimodel and the bimodel OB-COLD presented similar 
PAs (the largest difference is 3.4% in stress), but higher PAs than the 
pixel-based approaches (COLD–t95 and COLD–t99) at all agents, 
particularly for the stress category where the OB-COLD achieved 19.1% 
accuracy gain compared to the default COLD approach. 

5. Discussion 

5.1. Novelty of OB-COLD 

A traditional way of introducing OBIA into the time-series-based 
approach is postprocessing pixel-based detection results by connecting 
spatially and temporally adjacent break pixels into change-process ob-
jects (Hermosilla et al., 2015; Kennedy et al., 2015; Qiu et al., 2022), 
which we called “objectifying detection”. This post-processing step for 
labeling objects is performed after the detection is finished, and rarely 

Fig. 7. Performance comparison among the pixel-based COLD algorithm under the threshold of 95% change probability (COLD-t95), the COLD algorithm with 99% 
change probability (COLD-t99), the unimodel OB-COLD, and the bimodel OB-COLD. COLD: COntinuous monitoring of Land Disturbance; OB: Object-Based. 
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alters the general detected region, so the accuracy of the resultant map is 
mostly contingent on the upstream pixel-based temporal analysis. 
Differently, OBIA/spatial information is employed as the key component 
of OB-COLD to delineate and identify disturbance regions during the 
detection process (hereafter named “detecting objects”). The spatial 
information was exhaustively analyzed in OB-COLD mainly by two 
steps: 1) segmenting a layer of soft change measurement from a tem-
poral domain (i.e., change magnitude) to generate potential disturbance 
patch boundaries, ensuring the geometric completeness of detected 
patches regardless of the heterogeneity of within-patch spectral change; 
2) leveraging the spatial (e.g., patch size) and the thematic object-level 
features (e.g., pre-change cover types) to discriminate disturbance sig-
nals from a variety of data noise and climate-induced ephemeral change. 
As a result, OB-COLD could possibly result in a very dissimilar distur-
bance map with the “objectifying detection” approach, which is exem-
plified by an insect-affected site shown in Fig. 11: the disturbance 
patches derived from OB-COLD (Fig. 11C) presented a better spatial 
pattern for capturing spectral changes in Fig. 11A, while the COLD re-
sults (Fig. 11B) missed some parts of the insect-affected region where the 
time-series profile showed an obvious window of decreasing NIR 
(Fig. 11E), even though the same model parameterization (change 
probability = 0.95) was used for both. The accuracy improvement could 
be also substantiated by our quantitative assessment which showed the 
PA of COLD-t95 was lower than that of the two OB-COLD approaches by 
at least 10%. 

Of particular note is that object-level thematic information greatly 
contributes to accuracy improvement by enabling multiple cover- 
specific model parameterizations to be applied for generic land distur-
bance mapping. Compared to the unimodel OB-COLD, the bimodel OB- 
COLD significantly enhanced UA by 10.9% (Fig. 7). Specifically, the 
bimodel OB-COLD had lower disturbance over-detection for cropland 
and barren/grass cover types (see Fig. 8) because a more conservative 
parameter set for the fluctuated group was applied to these two cover 
types. Thematic information has been widely used as a cover mask layer 
to guide cover-specific disturbance detection in previous studies (Tang 
et al., 2019; Yang et al., 2022; Ye et al., 2021b). Assuming that the cover 

type is static, most of these studies did not deal with new land covers 
emerging outside the mask layer. By generating and applying annual 
cover maps from a seed map, OB-COLD provides an easy-to-use frame-
work for incorporating dynamic thematic information for mapping full- 
category or cover-specific disturbances. OB-COLD applies a robust 
approach based on a pixel-level majority vote to determine the thematic 
property for a change superpixel, which compensates for classification 
accuracy degradation brought by a lack of accessory datasets compared 
to LCMAP’s CCDC implementation (Zhu et al., 2016). In practice, OB- 
COLD can be implemented under an unimodel, bimodel or n-modal 
setting (n≤ the total number of cover categories). Our python package 
provides an interface for allowing users to define a customized n-modal 
system: finer model stratification will enhance the overall accuracy, and 
as a trade-off, requires a more sophisticated calibration for increased 
cover-specific parameter sets (P, S). 

Lastly, OB-COLD provides a novel computationally scalable frame-
work for approaching the grand challenge of large-scale spatiotemporal 
complexity: the steps of “temporal change measurement” and “change 
record construction” can be paralleled at the per-pixel level, and the step 
of “object-based change analysis” is performed on an image-based par-
allelization. Compared to the direct 3-D segmentation in a space-time 
cube that is popular in video processing (e.g., Moscheni et al., 1998), 
the “time-space-time” workflow has better scalability, because each 
parallelization unit in each step is completely independent without 
communications overhead between CPUs. Our efficiency tests show that 
the binary OB-COLD costs 1.62 times the computing hours than the 
original COLD (see Section S4 of the supplementary material). For the 
operational stage, the bimodal OB-COLD can use existing annual land 
cover products such as LCMAP land cover products (Xian et al., 2022) to 
save time for generating annual cover maps, which would result in the 
same computing time as the unimodal OB-COLD (only 1.37 times than 
the original COLD). 

To summarize, OB-COLD innovates the traditional pixel-based time 
series analysis and other spatiotemporal change detection algorithms 
mainly from three perspectives: 1) fully integrating OBIA into the 
change-detection process rather than object labeling; 2) incorporating 

Fig. 8. Producer’s (PA) and user’s accuracy (UA) for six pre-change land cover categories. The number in the parathesis within each sub-title indicates the change 
case number. The cover types were acquired by the annual land cover maps from the bimodel OB-COLD procedure. Note that COLD–95 and unimodel OB-COLD 
achieved identical PA and UA in F) Water/Ice so that their scatter dots were overlapped. COLD: COntinuous monitoring of Land Disturbance; OB: Object-Based. 
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thematic information; 3) enabling a computationally scalable frame-
work to address spatiotemporal data complexity. On recognizing “land 
change” as multiscale objects and examining their change properties 
from a time-series dataset, OB-COLD is essentially different from the 
past time-series studies which segmented static landscape objects as 
analytic objects (Hughes et al., 2017; Yin et al., 2018) and various 
object-based change detection techniques based on an image pair (e.g., 
Chen et al., 2012; Im et al., 2008; Liu et al., 2021; Wan et al., 2019; 
Zheng et al., 2021). As a spatiotemporal algorithm that makes exhaus-
tive use of spatial information for generic disturbance mapping, OB- 
COLD distinguished itself from other CCDC-like improvements such as 
temporal segment refinement (Bullock et al., 2020a) and spectral 
unmixing integration (Bullock et al., 2020b; Chen et al., 2021), which 
investigates spectral changes only from temporal domain and mainly set 
focus on forest disturbances. 

5.2. Limitation and future work 

Generally, the accuracies reported in this study were lower than the 
previous study targeting generic land disturbance (UA and PA > 70%, 
Zhu et al., 2019), which was primarily due to two reasons. First, the 
validation in Zhu et al. (2019) was based on Cohen’s dataset generated 
from a forest-oriented sampling strategy, while forest cover has the 
highest disturbance detection accuracy (see Fig. 8D). The use of a forest- 
oriented validation set would result in higher accuracy than using a 
purely random sampling dataset. Second, we incorporated the recent 
updates on the COLD algorithm including a new single-path strategy: for 
the overlapped region between two paths, only observations from the 
path with the smaller view zenith angle (Qiu et al., 2022) remained as 
the algorithm inputs. This strategy increased consistencies among wall- 
to-wall disturbance mapping, but as a trade-off, the decreased data 
density negatively impacted detection accuracies, particularly for short- 
interval disturbances such as gypsy moth (Zhu et al., 2022). Despite the 
overall performance improvement, the binary OB-COLD still only has 

Fig. 9. Map comparison of the default COLD (COLD-t95), the COLD under the F2 objective (COLD-t99), the unimodel OB-COLD, and the bimodel OB-COLD from the 
pilot Landsat ARD tiles for this study. The site locations: beetle outbreak – Rocky Colorado (h011v009); hurricane – South Florida (h027v019); forest management – 
Mississippi River Lowlands (h021v015); construction – New England (h030v006); agricultural practice – Corn Belt Plain (h021v008); drought– Western Great Plains 
(h014v006). COLD: COntinuous monitoring of Land Disturbance; OB: Object-Based; ARD: Analysis Ready Data. 
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58.7% UA, meaning a high level of over-detection. This is partly because 
we intentionally calibrated a biased model by F2, which put less weight 
on commission than omission errors. Commission errors mainly occur 
on the cover types cropland and grass/barren, accounting for 73% of the 
total commissions. The over-detections were mainly attributed to 
climate variability and intra-annual variation of agricultural-practice 
timing which often leads to a large-area spatial pattern of ephemeral 
spectral reflectance change. Such change processes were excluded from 
our disturbance definition, following the most common disturbance 
detection protocol (Pengra et al., 2020; Zhu et al., 2019). But agricul-
tural practices and climate variability might be of interest to other 
domain-specific studies (e.g., Huete, 2016; Seddon et al., 2016), and 
could be potentially separated out by causal agent classification tech-
niques, such as in Zhang et al. (2022). 

Different from traditional change detection based on two time 
points, satellite time series provides a long span of land surface dynamic 
history which uniquely allows for an examination of land change from 
multiple spatiotemporal scales. In OB-COLD, a fine temporal grain (i.e., 
a two-month interval for deriving objects) is chosen for the detection 
purpose so that we can accurately capture the change date as close to its 
emergence date. The temporal interval for generating change objects 
could be adjusted as needed by the monitoring tasks or based on the 
temporal resolution of the original dataset, laying a solid foundation 
toward near real-time monitoring adaption at a daily or weekly tem-
poral scale in future. On the other hand, a broad temporal scale might be 
preferable for the downstream disturbance characterization, especially 
for those long-term change processes such as forest degradation (Med-
dens and Hicke, 2014) and urbanization (Taubenböck et al., 2012). 

Fig. 10. Agent-specific producer accuracies based upon an assemblage of calibration and evaluation set. Note that we reclassed some categories due to in-
consistencies of agent systems between Cohen’s and LCMAP reference datasets: for LCMAP reference datasets, spectral decline and structural decline were combined 
into the stress category; for Cohen’s reference datasets, wind was merged to other due to its small sample number (only 11 cases). LCMAP: Land Change Monitoring, 
Assessment, and Projection. 

Fig. 11. A sample pixel affected by west-
ern spruce budworm (indicated by aerial 
surveying dataset) from the center Wash-
ington (Lat: 47.3068; Lon: − 120.6689; 
Cascades Plateau - H004V002) for exem-
plifying “objectifying detection” vs 
“detecting objects”. A) depicts a spatial 
pattern of contiguous increased change 
magnitudes induced by spruce infestation 
from a change magnitude snapshot (04/ 
22/2011–06/21/2011); B) labels con-
nected pixels of a yearly COLD disturbance 
map (the year of 2011, 0.95 change 
probability) into multiple disturbance 
patches (the colors represent different 
patches), i.e., “objectifying detection”; C) 
shows disturbance patch map generated 
from the yearly binary OB-COLD distur-
bance map (the year of 2011, the colors 
represent different patches); E) and F) ex-
emplifies the time-series profile showing 
that “objectifying detection” missed some 
insect-affected regions where the time se-
ries shows an obvious window of 
decreasing NIR. COLD: COntinuous moni-
toring of Land Disturbance; OB: Object- 
Based.   
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While disturbance characterization is beyond the scope of this study, the 
accurate delineation of change superpixel and patches provide a pre-
requisite for generating high-quality change-process objects, which 
could be further used for disturbance characterization. The future study 
will be directed to establish a graph model that connects those spatially 
and temporally adjacent change patches identified by OB-COLD, similar 
as Wu et al. (2021) did. Compared to post-processing annual disturbance 
detection maps, such graph models could remove the annual bounds for 
defining a long-term change process and open a door for a plurality of 
GIS-like spatiotemporal analysis and database techniques, revolution-
izing current disturbance process analytic tools and database 
management. 

OB-COLD could be easily adapted for other Landsat-like time series 
datasets, such as 10-m Sentinel-2 or Harmonized Landsat Sentinel-2 
(HLS), which has the potential for further enhancing the mapping 
capability. For example, the Sentinel-2 dataset has been reported to be 
superior to Landsat images for detecting small-scale disturbances such as 
selective logging (Lima et al., 2019); same as COLD and the LCMAP 
products, OB-COLD uses a peek window of six consecutive Landsat ob-
servations to identify a disturbance signal and thereby likely missed 
detection for those short-lived disturbances such as flash floods, which 
could be better detected using denser time series such as HLS dataset 
(Tulbure et al., 2022). 

6. Conclusion 

We developed a novel algorithm named “Object-Based COntinuous 
monitoring of Land Disturbance” (OB-COLD) for detecting land distur-
bances which could make better use of spatial contexts – often neglected 
- for the dense time-series analysis. OB-COLD is built upon the concept 
“concurrent change”, a group of spatially adjacent pixels that are 
experiencing similar spectral changes within a short time interval. To 
extract and analyze concurrent change, OB-COLD generates change 
snapshots stamped by a series of time slices, groups spectrally similar 
change pixels into two levels of change objects, and then applies object- 
level change decision for each snapshot. The benefits of a such workflow 
are three-folded. First, OB-COLD inherits a temporal view from a well- 
established time-series algorithm, i.e., COLD, which measures the 
spectral changes relative to the historic natural variability and applies a 
peek window of consecutive observations for robust change magnitude 
calculation. Second, change magnitude snapshots, as a soft measure-
ment of concurrent change, are an effective proxy for spectral change 
induced by a single change process, facilitating a spatial examination of 
change regions. Lastly, object-level properties introduce new insights for 
change detection and enhance detection accuracy, particularly for subtle 
change processes: the change patch size reflects concurrent change 
extent from a broad spatial context, as a strong indicator for real change 
processes against data noises; the incorporation of object-level thematic 
information enhances model specificity by applying cover-specific 
model parameterizations. Compared to the default COLD algorithm, 
the new algorithm improves land disturbance detection accuracies by 
significantly increasing PA (+16%) without degraded UA. Despite 
~40% of commission errors, most commission errors (73%) are attrib-
uted to agricultural practices and climate variability. The proposed al-
gorithm owns high algorithmic transparency and computationally 
scalability for large-scale datasets with advanced computing resources, 
holding great potential as the base detection algorithm for the next 
generation of land disturbance products. 
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