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Timely and accurate monitoring of forest disturbance is essential to help us understand how the Earth system is
changing. MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and subsequent MODIS products
provide near-daily global coverage and have transformed the ways we study and monitor the Earth. Tomonitor
forest disturbance, it is necessary to be able to compare observations of the same place from different times, but
this is a challenging task using MODIS data as observations from different days have varying view angles and
pixel sizes, and cover slightly different areas. In this paper, we propose a method to fuse MODIS and Landsat
data in a way that allows for near real-time monitoring of forest disturbance. The method is based on using
Landsat time-series images to predict the next MODIS image, which forms a stable basis for comparison with
new MODIS acquisitions. The predicted MODIS images represent what the surface should look like assuming
no disturbance, and the difference in the spectral signatures between predicted and observed MODIS images
becomes the “signal” used for detecting forest disturbance. The method was able to detect subpixel forest
disturbance with a producer's accuracy of 81% and a user's accuracy of 90%. Patches of forest disturbance
as small as 5 to 7 ha in size were detected on a daily basis. The encouraging results indicate that the
presented fusion method holds promise for improving monitoring of forest disturbance in near real-time.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Changes in forests influence various aspects of the Earth system,
including the climate through the exchange of carbon dioxide with
the atmosphere and energy and water exchanges between the bio-
sphere and atmosphere (DeFries et al., 1999). Most forest change is
caused by natural forces such as flooding, drought, fire, insects, and
diseases, or by human activities such as clear cutting, thinning, and
burning (Gong & Xu, 2003). Most human-induced forest disturbances
tend to be small in size (Kuemmerle et al., 2007; Townshend & Justice,
1988) and can occur within days or weeks. Timely and accurate moni-
toring of forest disturbance, especially human-induced disturbance,
is vital to understand how the Earth is changing and the role humans
are playing in that change (Hansen et al., 2008b).

Remotely sensed data from satellites have been successfully used
to quantify rates of forest disturbances (Coppin et al., 2004; Singh,
1989), particularly with Landsat imagery (e.g. Kennedy et al., 2010;
Masek et al., 2008). Despite tremendous progress in this domain,
almost all the efforts to date have been retrospective, or quantifying
y Laboratory for Earth System
a University, Beijing 100084,

rights reserved.
past changes in the landscape. While knowledge of past locations
and rates of land surface change are useful and important, another
way to significantly increase the value of information about forest
disturbance from remote sensing would be to provide the information
as close in time as possible to when changes occur. The ability to map
forest disturbances in near real-time is relevant to policy and manage-
ment, as early warning allows governments to take faster action to
stop illegal logging or encroachment on protected areas (INPE, 2002).

To date, what is missing is a comprehensive way to monitor forest
disturbance globally in near real-time at spatial scales that will
capture human activities. Use of a single satellite sensor is often limited
by the trade-off between the spatial, spectral and temporal resolution of
instruments. For example, moderate resolution sensors like Landsat
(or similar sensing systems like CBERS, ResourceSat, SPOT/HRV, etc.)
have sufficient spectral bands and fine spatial resolution that allow for
accurate change detection, but simply do not collect images frequently
enough for near real-time monitoring. On the other hand, MODIS
(or similar sensing systems like ENVISAT/MERIS, SPOT/VGT, Suomi-
NPP/VIIRS, etc.) has sufficient temporal resolution but less than ideal
spatial resolution (0.25–1 km). As a result, while MODIS data have
proven useful in near real-time monitoring of natural disturbance
at large scales such as fires (Roy et al., 2005), insect outbreaks (Spruce
et al., 2011) and drought (Verbesselt et al., 2012), most human
modifications to the environments, particularly over days to weeks,

http://dx.doi.org/10.1016/j.rse.2013.04.002
mailto:xqcchina@gmail.com
http://dx.doi.org/10.1016/j.rse.2013.04.002
http://www.sciencedirect.com/science/journal/00344257


Fig. 2. The spectral signatures of cloud-free observations shown in Fig. 1. Note that
variation in the footprints makes spectral comparisons for finding changes difficult.
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are considerably smaller. In addition, most analysis to date has been
retrospective or quantifying changes in the landscape in yearly or
decadal time steps (Carroll et al., 2004; Zhan et al., 2002). So far, neither
Landsat nor MODIS, by themselves, have been capable of forming
the basis for global monitoring of forest disturbance in near real-time.

1.1. The difficulties of using MODIS data to monitor forest disturbance

To capture abrupt disturbances, it is necessary to compare frequent
observations of the same place (Lhermitte et al., 2011). However,
per-pixel comparison of MODIS daily imagery has proven problematic
because a substantial proportion of the spectral signal of each MODIS
pixel comes from surrounding areas (Townshend et al., 2000). Fig. 1
shows the footprints of one week of MODIS observations overlaid on
a QuickBird image (methods described in Section 3.2). Although the
footprints vary considerably in size and center locations, and cover a
diverse set of land covers, they are binned into the same predefined
grid cell (the white parallelogram in Fig. 1) to produce downstream
products (Wolfe et al., 1998). On average, only about 30% of the MODIS
observations come from the area of the associated grid cell (Tan et al.,
2006).

The result is high variability in the spectral signatures on consecutive
days, which complicatesmonitoring of changes (Fig. 2). For example, the
surface reflectance on Day 258 and 260 is lower than that on Day 255,
simply because of the spectral contribution from a small pond (dark
blue area in Fig. 1). This illustrates the reason it is difficult to monitor
land change with MODIS daily gridded products: the spectral signatures
associated with the same grid cell can change significantly even when
the land surface is not changing.

The impact of the mismatch between MODIS swath observations
and predefined grid cells is known (Huang et al., 2002) and has
been documented by Roy (2000) with implications being explored
by Tan et al. (2006). For these reasons, it is a common practice to
use composited MODIS data or averages over time and/or space to
minimize this noise (e.g. Jin & Sader, 2005; Lunetta et al., 2006).
As such, existing efforts that use MODIS gridded data for change
detection have tended to focus on large changed patches and have
largely been retrospective. However, given the relatively small sizes
of most land changes (Townshend & Justice, 1988), particularly at
time scales of days to weeks, it is essential to be able to process
MODIS daily data at pixel level to find areas of forest disturbance.

1.2. Fusion of Landsat and MODIS data

One possible solution to this problem is to combine the strengths of
the high spatial resolution of Landsat and the high temporal resolution
of MODIS. There has been progress in the blending of Landsat and
Fig. 1. The footprints of MODIS swath observations in a week overlaid on a QuickBird image. Th
The footprints include the corresponding nominal area that contributes 75% of the signals and
MODIS data. For example, Hansen et al. (2008a) used the MODIS
Vegetation Continuous Fields product to calibrate Landsat data to map
forest disturbance in the Congo River Basin. Roy et al. (2008) developed
a method for filling gaps in Landsat data using MODIS data. Gao et al.
(2006) developed the Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM) algorithm to predict Landsat surface reflec-
tance using MODIS data. Hilker et al. (2009a,b) added a disturbance
index based on the Tasseled Cap transformation to the STARFM algo-
rithm to detect forest disturbance. In their work, two Landsat images
acquired at the beginning and the end of a study period were used to
delineate forest disturbances by thresholds in Tasseled Cap indices.
A combination of Landsat and MODIS data was used to estimate
the timing of disturbance at 8-day intervals using MODIS data. Their
method yielded high accuracies but differs from the method presented
here. Their approach essentially detected changes between pairs of
Landsat images, and as suchmustwait for a newLandsat image to identify
change. The method in this paper is intended to be used as close to near
real-time as possible, by identifying forest disturbances on a daily basis
as new MODIS swath data become available.

Here, we propose a fusion method different from the above-
mentioned efforts in that we use Landsat data to predict MODIS
observations. The overall benefit is to take advantage of the high
temporal resolution of MODIS data to allow monitoring of forest
disturbance in near real-time. The method is based on using a
Landsat time-series to predict what new MODIS images should
look like assuming the absence of forest disturbance or land cover
change. The central hypothesis of the method is that our predicted
MODIS images form a better baseline for comparison with actual
MODIS observations than prior MODIS observations. Differences
between predicted and observed MODIS images then become
e observations shown are binned into the same 500 m grid cell (the white parallelogram).
adjacent nominal area that contributes 25% of the signals.

image of Fig.�2
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indicative of forest disturbances. The first part of this paper describes
the fusion method and the second part presents an application of
the method for detecting forest clearing and thinning in an area in the
Southeastern Unites States.
2. Study area and materials

We selected two study areas (Fig. 3) in the United States: one
located in New England (NE) for evaluating the predicted images,
and one located in the Savannah River Basin (SRB) on the border
between the states of Georgia and South Carolina for evaluation of
the ability to map forest disturbance. The study area of NE (Landsat
Path 12 Row 31) exhibits a relatively low rate of forest disturbance
(Jeon et al., 2012) and was chosen because significant surface change
would complicate the evaluation of our efforts to predict what
an image would look like in the absence of change. The SRB area
(Landsat Path 17 Row 37) is characterized by intensive forest man-
agement and represents a challenging environment for finding forest
disturbances at MODIS spatial resolution as most pixels are a mix of
forest and agriculture or other land uses.

Temporally dense series of Landsat ETM + images (30 m spatial
resolution; UTM projection) from the USGS open archive (WWW1)
were used to predict MODIS daily images. All available ETM + images
with a cloud cover less than 90% were downloaded (68 images
2000–2002 for the NE site, and 33 images 2001–2002 for the SRB site)
for analysis.

Three kinds of standardMODIS productswere used: theMODIS/Terra
L2 swath surface reflectance product (MOD09), the MODIS/Terra L2G
daily global gridded surface reflectance product (MOD09GA), and the
MODIS L3 16-day global BRDF/albedo model parameter products
(MCD43A1). All these products are available from NASA science data
distribution centers (MOD09 from WWW2; MOD09GA and MCD43A1
from WWW3). MODIS data were acquired between September 11 to
October 13 in 2000 for the NE study area and for the whole year of
Fig. 3. The New England (NE) and Savannah River Basin (SRB) sites in United States. (A) A
image was collected on 27 Sep 2000. (B) A land cover map from the 2006 National Land C
used for validation.
2003 for the SRB study area. Details on these products can be found on
the MODIS data website (WWW4).

To assess the accuracy and timeliness of the detection of forest
disturbance using the fusion method, we need to know where and
when disturbances occurred. Validation of multi-temporal detection
of forest disturbance using the proposed method is challenging,
because independent reference sources with well-recorded timing,
acreage, and location of land change must be available for both
ends of the change interval. A suitable source of reference data
that meet these requirements is provided by temporally dense series
of Landsat images. For this reason, we manually interpreted all avail-
able Landsat TM/ETM + images in a year to derive a reference map of
forest disturbance for the SRB site (Fig. 4). The reference map thus
represents the timeliest result that we can achieve using Landsat data.

A complete description of the production of the reference map
is available in Zhu et al. (2012), and details provided here relate more
directly to the fusion method. The reference map covers an area of
580 km2 out of which 5% (29.4 km2) is forest disturbance. The refer-
ence map consists of 21 rectangular areas for validation, each more
than 3 × 3 km in size, where areas of forest disturbance were carefully
identified. Based on the map of annual forest disturbances, interpreters
sorted through all Landsat TM/ETM + images in 2003 (24 images
with less than 90% cloud cover in total) to find the date when the forest
disturbance had not yet occurred in 2003 (Fig. 4A) andwhen the distur-
bance could first be observed in Landsat data (Fig. 4B).

When trying to determine the date of disturbance for any day
between Landsat acquisitions, there are three possibilities: (1) areas
that have been disturbed during a prior time period – we refer to
these areas as known-date; (2) areas that we know were disturbed
during the time interval between acquisitions but we are not sure of
the exact date – these are referred as unsure-date; and (3) areas
that have not been disturbed, which are referred to as undisturbed.
The detection of disturbance of unsure-date using the fusion approach
would represent a timelier mapping of disturbance than is possible
with Landsat.
true-color composite image (Landsat Bands 3, 2, 1) showing the NE area. The Landsat
over Data of the SRB site. Note that this is not the reference map of forest disturbance

image of Fig.�3


Fig. 4. The reference maps of forest disturbance at 30 m resolution. (A) This map shows the dates (represented by colors with negative values in 2002) that forest disturbances have
not occurred in 2003 based on time-series images of Landsat TM and ETM+. (B) This map shows the dates (represented by colors) when forest disturbance in 2003 first could be
identified in the Landsat time series. The backdrop is a 15 m Landsat ETM + panchromatic image collected on 23 Nov 2002.
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3. Methodology

The workflow of our fusion system is presented schematically in
Fig. 5. The fusion process consists of two major steps. The first step is
to predict a Landsat image for a new date based on time-series analysis
of Landsat data. The second step is to use the predicted Landsat image
for a particular day to predict what the MODIS image should look like
for that day. The prediction of MODIS swath observations from a finer
resolution Landsat image is made possible by application of the
MODIS Point Spread Function (PSF), and explicit consideration of the
changing location and size of MODIS observations on a daily basis. To
improve our efforts on predicting the next MODIS images, an additional
step is made to correct the effects of viewing and illumination geometry.
In this way, the predicted MODIS swath data can be compared with real
MODIS acquisitions on the same day for monitoring forest disturbance.

3.1. Brief description of predicting daily Landsat data

A detailed description of this step is provided in Zhu et al. (2012)
with a brief summary provided here, as it is fundamental to the
presented methodology. First, a time series of Landsat ETM + images
was atmospherically corrected and areas contaminated by cloud,
cloud shadow and snow were masked out. A time series model
was then fit for each pixel to predict daily surface reflectance. The
time-series model used in this study is based on Fourier analysis
that models the time-series as a function of sines and cosines (Zhu
et al., 2012):

f xð Þ ¼ a0 þ∑N
i¼1 ai cos

2π
iT

x
� �

þ bi sin
2π
iT

x
� �� �

þ aNþ1 cos
2π
0:5T

x
� �

þ bNþ1 sin
2π
0:5T

x
� �

ð1Þ

where, x is the day of the year; N is the number of years; T is the
number of days per year (T = 365); a0 is the coefficient for overall
surface reflectance; ai and bi are the coefficients that capture the
changes for the ith year; and aN + 1 and bN + 1 are the coefficients
that capture the bimodal change for each year.

This approach is computationally intensive since all parameters
have to be successively fit for each of the six spectral bands of
every Landsat pixel. The outliers, for example observations affected
by clouds and cloud shadows, are removed during this process.
Once the model is fit, it is possible to predict a Landsat image for
any given day during or following the time-series. The model yielded
R-square values above 0.9 between predicted and observed Landsat
images (Zhu et al., 2012).

3.2. Predicting MODIS swath data from Landsat data

Efforts to use Landsat data to explore the anticipated characteristics
of data at MODIS spatial resolutions predate the launch of MODIS
(e.g. Barker & Burelhach, 1992; Moody & Woodcock, 1994). The
MODIS Science Team developed general-purpose tools to aggregate
Landsat data to MODIS spatial resolutions, including an effort to add
sensor noise during the aggregation process. These programs, however,
did not take into account the effects of view angles and the associated
variability in the footprint of MODIS observations. In addition, there
was no attempt to explicitly include the effects of Point Spread Function
(PSF), which characterizes a sensor's response. Unlike Landsat, the
MODIS PSF is modeled as triangular in the scan direction and square
in the along-track direction, which means point sources on the ground
surface do not contribute equally to a MODIS observation (Wolfe et al.,
1998). Since the location, view angle and size of MODIS observations
vary from day to day, our fusion method takes all these factors
into account.

The fusion method simulates the acquisition process of MODIS
by treating the predicted Landsat images as the ground surface, and
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Fig. 5. The flowchart of the proposed methodology for detecting forest disturbance.
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estimates MODIS swath data by carefully placing each MODIS
footprint on the predicted Landsat images and convolving it with
the sensor PSF.

A single observation of MODIS can be written as follows (Tan et al.,
2006):

Fλ ¼ ∫y0þϕ
2

y0−ϕ
2

∫x0þψ
2

x0−ψ
2

w x−x0; y−y0ð Þf λ x; yð Þdxdy ð2Þ

w x; yð Þ ¼ ψ− x−x0j j x; yð Þ∈D
0 otherwise

�
ð3Þ

where, Fλ is the electronic signal for wavelength λ collected by a MODIS
observation centered at location x0,y0; fλ denotes the spatial distribution
of the reflectance from the ground surface, in this case, the Landsat
surface reflectance data; x and y represent the locations of Landsat pixels
with respect to the MODIS observation in the scan and along-track
directions, respectively; ϕ and ψ are the dimensions of the MODIS
observation in the scan and track directions, respectively; w(x,y) is the
MODIS PSF; and D is the footprint of the MODIS observation.

To solve the two equations above, accurate locations of the center
and footprint of each MODIS swath observation are required. In other
words, for every MODIS daily swath overpass, we have to locate the
center position x0 and y0 of each MODIS swath pixel with respect to
the Landsat images, orient the scan direction and along-track direc-
tion, and derive the pixel dimensions. This work is being done with
MOD09 (the swath data) instead of MOD09GA (the daily gridded
product), because some information, including the dimensions and cen-
ters of observations, is irretrievable after the MODIS gridding process.

The center locations of the 1 km MOD09 swath observations are
given in latitude and longitude. These coordinates are transformed
to UTM global coordinates to match the Landsat images. Interpolation
is used to find the center locations for the 500 or 250 m pixels. This
is done in two steps (Gumley et al., 2003): (1) in the along-track
direction, each scan cycle of MODIS must be interpolated separately
because of the overlap between successive scan cycles (Wolfe et al.,
2002); (2) in the scan direction, it is required to offset the bilinear
interpolation at different resolutions because the centers of 250,
500, and 1000 meter pixels of each scan cycle are co-registered
(Nishihama et al., 1997). Fig. 6 shows the relative positions between
the 1 km MODIS geolocation data and the derived 500 m centers.

In terms of orientation, the MODIS footprints at 250, 500 and
1000 m are considered to be in perfect alignment (Wolfe et al., 1998).
The scan direction of each MODIS pixel is determined by the center
locations of adjacent pixels along the scan line. The track direction
is then perpendicular to the scan direction for each MODIS pixel.
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The exact shape of a MODIS swath observation is possibly
influenced by the atmosphere and topography. A rectangular shape
is assumed by Tan et al. (2006). We have tested various shapes of
the MODIS footprints, including oblong, rectangular, and oval. The
oval shape gave the best results compared with real MODIS images,
as measured by the coefficient of determination (R2). Moreover,
the oval shape is essentially the projection of a conical view from a
point source. It fits the model of the triangular PSF in the scan direc-
tion and the square PSF in the track direction well. In fact, the shape
of MODIS footprints were not found to have a strong impact on
the simulations as the fine resolution pixels (i.e. Landsat data) within
differences among those shapes have smaller PSF weights and con-
tribute less to a MODIS swath observation than pixels in the center.
Therefore, the oval shape (Fig. 6), including all areas that contribute
to a MODIS observation, was adopted as a good approximation in our
study.

Nominal dimensions of MODIS pixels in both the scan and
along-track directions increase with increasing scan angles. The scan
angles progressively increase from −55° to 55° with an increment
of about 0.0406° for the 500 m pixels at a fixed altitude of 705 km.
The MODIS products integrate ancillary data (e.g. digital elevation
models) to calculate the altitude more precisely (Nishihama et al.,
1997). At this stage, we have not compensated for the effects of
topography, as the study areas are relatively flat. In future studies of
mountainous terrain, we may need to consider topography effects
to improve this simulation. As calculated based on functions defined
in Appendix B of Tan et al. (2006), the dimensions of MODIS swath
pixels are 2.4 km in the scan direction and 1.0 km in the track direction
at the end of a scan line. These numbers are consistent withWolfe et al.
(1998).

With knowledge of individual MODIS footprints such as location,
size and orientation (as shown in Fig. 6), the “predicted” MODIS
spectral reflectance can be calculated by convolving the surface
reflectance of all Landsat pixels according to the MODIS PSF. Since
the predicted Landsat images are free of clouds, cloud shadows,
and snow, this convolution process does not have to handle the
cloudy or shadowed Landsat pixels. The minor differences in the
spectral bands between Landsat and MODIS are ignored as in
other fusion studies (e.g. Gao et al., 2006; Roy et al., 2008). Since
our approach is based on predictions of a Landsat time-series, the
difference in the overpass time between the Terra and Landsat
platforms has little influence.
Fig. 6. The footprints of MODIS swath and gridded products overlaid on a Landsat
ETM + image. The black lines are the boundaries of the MODIS grid cells and the
yellow lines are the boundaries of the MODIS swath observations. The view zenith
angles of MODIS swath observations are approximately 50°. The center points of
the 500 m and 1 km swath observations data demonstrate their relative positions
and illustrate the interpolation method.
3.3. BRDF correction

The Bidirectional Reflectance Distribution Function (BRDF) describes
how the surface reflectance changes when viewed and illuminated from
different angles. MODIS images are collected over a wide range of view
angles, while predicted MODIS images based on Landsat images are
essentially viewed from nadir. Therefore, it is important to account
for the effects of bidirectional reflectance in predicted MODIS images.
A simple solution based on the work of Roy et al. (2008) was tested to
compensate for bidirectional reflectance effects.

The operational MODIS BRDF algorithm uses a linear BRDF model
that relies on the weighted sum of an isotropic parameter and two
kernels of viewing and illumination geometry (Schaaf et al., 2002):

RMODIS ΩΩ′
;λMODIS

� �
¼ f iso λMODISð Þ þ f vol λMODISð Þ � kvol ΩΩ′

;λMODIS

� �
þf geo λMODISð Þ � kgeo ΩΩ′

;λMODIS

� �
ð4Þ

where RMODIS(ΩΩ′,λMODIS) is the reflectance for the wavelength λMODIS

with viewing vectors Ω and illumination vectors Ω′; kk(ΩΩ′,λMODIS)
are the BRDFmodel kernels; and fk(λMODIS) are the spectrally dependent
BRDF parameters.

Roy et al. (2008) assumed that the MODIS modulation term c
(defined below) for a particular MODIS wavelength λMODIS was repre-
sentative of the reflectance variation at the Landsat scale for a spectrally
similar Landsat ETM + wavelength λETM +. The functions to correct the
BRDF effects could then be described as:

c λð Þ ¼
RMODIS Ωobserved;Ω

′
observed;λMODIS

� �
RMODIS Ωnadir;Ω

′
observed;λMODIS

� � ð5Þ

R̂ETMþ λETMþ
� � ¼ c λð Þ � RETMþ λETMþ

� � ð6Þ

where RMODIS Ωobserved;Ω
′
observed;λMODIS

� �
is the surface reflectance of

MODIS for the wavelength λMODIS sensed with viewing vectors
Ωobserved and illumination vectors Ω′

observed for a given day;
RMODIS Ωnadir;Ω

′
observed;λMODIS

� �
is the modeled reflectance with

nadir viewing vectors Ωnadir and illumination vectors Ω′
observed;

themodulation term c(λ) is the ratio of off-nadir to nadir surface reflec-
tance of MODIS for the wavelength λ; RETM +(λETM +) is the surface re-
flectance frommodel fitting of a time series of Landsat ETM + images;
and R̂ETMþ λETMþ

� �
is the BRDF-adjusted Landsat reflectance.

Compensating for BRDF effects was done in three steps based on
Eqs. (4) to (6). First, the BRDF Forward Model Tool (WWW4;
Schaaf et al., 2002) was used to retrieve the surface reflectance of
MODIS pixels for each spectral band. Inputs to the model include
16-day BRDF parameters (isotropic, volumetric, and geometric) obtained
from theMCD43A1product anddaily viewing and illumination geometry
data (resampled to 500 m) obtained from the MOD09GA product.
The model generates MODIS surface reflectance data for specific viewing
and illumination angles, including nadir. All inputs and outputs are
gridded datasets at 500 m resolution in a Sinusoidal projection. Second,
the modulation terms c(λ) were calculated as the ratio of off-nadir
to nadir surface reflectance for each band for each pixel, which
were resampled to 30 m resolution (WGS-84/UTM) using the MODIS
Reprojection Tool (WWW5). Third and last, the predicted Landsat daily
surface reflectance data were multiplied by the modulation terms to
correct for the bidirectional reflectance effects. In essence, predicted
Landsat surface reflectance is corrected to the same viewing and illumi-
nation geometry as MODIS for a given day. Landsat data after BRDF
correction are then convolved in the fusion process (described in
Section 3.2) to predict MODIS swath data. In this way, the predicted
and observed MODIS images for a given day have the same footprints
and viewing and illumination geometry.
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3.4. Evaluating predictions of MODIS data

An underlying hypothesis of the fusion method is that the predicted
MODIS observations form a better baseline for comparison with actual
MODIS observations than previously collected MODIS observations. To
test this hypothesis, simple linear regressionswere performed between
predicted and observed MODIS images, and between successive days
of actual MODIS images. A higher coefficient of determination (R2)
is considered a more robust baseline for comparison.

Such comparisons required screening the actual MODIS images for
clouds, which was done by building cloud masks based on the ancillary
MODIS quality data. Cloudy pixels were defined as observations with a
cloud state, cloud shadow, cirrus detected, and internal cloud algorithm
flags above zero in the quality metadata. To minimize the influence of
clouds, we also tested a “buffer” algorithm, which labeled as cloudy
all pixels within a distance of 3 pixels of a cloudy pixels in the MOD09
metadata. The MODIS surface reflectance product occasionally has
negative reflectance because of the atmospheric correction, and a
minimum threshold of 0.001 was used to remove negative values of
surface reflectance. Comparisons of predicted MODIS images before
and after BRDF correction were made separately to assess the impact
of the BRDF correction approach.
Fig. 8. Examples of predicted (left panel) and observed (right panel) MODIS swath
images. (A) and (B) show predicted and observed true-color composites (MODIS
bands 1, 4, 3) for the NE site at a view zenith angle of 4° (September 11, 2000).
(C) and (D) are similar but MODIS observations were acquired at a view zenith
angle of a 51° (September 17, 2000). Note that the predicted images are free of
clouds even if it was cloudy on that day.
3.5. Change detection using image differencing

There have been many kinds of algorithms proposed for change
detection based on remotely sensed imagery (Coppin et al., 2004;
Lu et al., 2004). At this stage, our primary concern is to test the fusion
system to see if forest disturbances at the pixel or sub-pixel level
of MODIS can be detected. For this reason, only image differencing,
the most widely used change detection algorithm (Singh, 1989),
was used to map forest disturbances.

To identify forest change, an empirical threshold of −0.070 for
ΔNDVI was used in combination with a requirement that the MODIS
pixels must be greater than 60% forest cover. The forest cover map
was a by-product of the time-series analysis of Landsat imagery
(Zhu et al., 2012). Tests were performed at both 250 m and 500 m
resolution to determine how the spatial resolution influenced the
ability of MODIS to detect changes, and to quantify the minimum
size of disturbed patches that we could reliably detect. Even though
the optimal threshold may vary with viewing geometry and spatial
Fig. 7. The frequency distribution of forest disturbances in MODIS observations. The Y
axis is logarithmic. This Figure illustrates the rule used in the accuracy assessment with
a threshold 60%: (1) MODIS pixels with at least 60% disturbance must be mapped as
forest disturbance to be considered correct; (2) pixels with less than 5% disturbance
must be mapped as undisturbed to be considered correct, and (3) pixels with between
5 and 60% disturbance are left out of the accuracy assessment as it is unclear whether
they should be considered in the forest disturbance or undisturbed class.
resolution, only one threshold was applied to detect forest disturbances
for simplicity.
3.6. Accuracy assessment

Evaluating the pixel-level accuracy of change detection is compli-
cated as we are evaluating a change map at a coarser resolution than
the Landsat-based reference map. Usually, binary forest change maps
have two distinct classes: forest-disturbance and undisturbed, and so
does the subsequent accuracy analysis. However, in this study, there
is a proportion of disturbance for each MODIS swath pixel. If no
disturbance has occurred in the footprint of a MODIS observation, it
is obvious that the observation should be labeled as undisturbed.
Similarly, if 100% of a MODIS footprint has changed, it should be
labeled as forest-disturbance. However, for the cases in-between, it is
somewhat arbitrary to select a single threshold to separate the two
classes.

Since our goal is to identify where forest disturbance is occurring,
the smaller the percentage of disturbance that can be reliably
found, the better. To address this question, we have defined the
forest-disturbance class using five different proportions of disturbance:
>60%, >50%, >40% >30% and >20% of a MODIS footprint (see an
example in Fig. 7). For example, a disturbance proportion of >60%
means that at least 60% of the MODIS footprint is disturbed according
to the referencemap. In this case, MODIS observationswith a proportion
greater than 60% disturbance are considered members of the forest-
disturbance class, while observations with less than 5% disturbance
are considered members of the undisturbed class. Observations with a
disturbance proportion between 5% and 60% are ignored, as they cannot
unambiguously be labeled either forest-disturbance or undisturbed. Thus,
the undisturbed class in the referencemap remains the same for different
thresholds, while the forest-disturbance class grows as the thresholds
decrease.
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Fig. 9. Predicted versus observed surface reflectance. The spectral bands of NIR (top row) and red (bottom row) are compared for the off-nadir images (Fig. 8C and D) of the NE site.
Comparisons were made for three cases: clouds screened using the MODIS cloud mask (left column); clouds screened using the MODIS cloud mask plus a 3-pixel buffer (middle
column); BRDF correction plus cloud screened using the 3-pixel buffer (right column). The solid lines denote the 1:1 lines, and the dashed lines denote the regression lines.
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To further complicate the issue, the disturbance polygons in
the reference map are labeled either known-date or unsure-date.
Consistent identification of unsure-date could demonstrate the
advantage of timelier detection using the fusion method than using
Landsat data alone, but these pixels are excluded since we cannot be
sure of the exact date when the changes occurred. For this reason,
although the forest disturbance maps contain changes throughout 2003,
we only validate results from the last four months (September 1 to
December 31, 2003) tominimize the influence from the unsure-date class.

For quantitative evaluation, the primarymetrics for accuracy used in
this paper are the producer's, user’s, and overall accuracy. These are
typically probabilistic measures of map accuracy estimated from a
probability sample (Olofsson et al., 2013). In this case, our reference
maps do not constitute a probability sample and thesemeasures should
therefore not be interpreted as probabilistic measures of map accuracy
but as measures of the amount of omission, commission and overall
error in the generated disturbance maps. High producer's accuracy
means less omission error, while high user's accuracy implies less
commission error. In this study, producer's, user's and overall accuracies
are defined as:

Producer0s Accuracy ¼ Number of pixels with }known−date} correctly identified
Number of pixels with }known−date} in reference maps

ð7Þ

User0s Accuracy ¼ Number of pixels with }known−date} correctly identified
Number of pixels identified as disturbances in produced maps

ð8Þ
Overall Accuracy ¼ Number of pixels correctly identified
Number of all pixels

ð9Þ

Another metric is the site-level detection rate, which measures
how often and consistently individual patches of disturbance can be
detected. For this analysis, a number of individual patches are identi-
fied, and the detection rate describes the frequency with which
they are detected. Note that the detection rate is unrelated to errors
of commission and benefits from a low threshold. It therefore needs
to be interpreted together with the proportion of commission errors
(i.e. the user's accuracy).

Detection Rate ¼ Number of days with patches detected
Number of days with cloud� free observations

ð10Þ

4. Results

4.1. Prediction of MODIS observations

True-color composite images of both near-nadir (Fig. 8A and B)
and off-nadir (Fig. 8C and D) “predicted” and observed MODIS
swath data at 500 m resolution are shown in Fig. 8. The predicted
images are always free of clouds even if it was cloudy on that day.
The phenomenon of pixel duplication due to the “bow-tie” effect
(Wolfe et al., 1998), whereby successive MODIS scans overlap each
other at the edge of a swath, can be seen in both the predicted and
the observed swath data. This phenomenon is more pronounced
for observations collected off-nadir (Fig. 8C and D). In addition, the
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Fig. 10. The coefficients of determination (R2) between predicted and observed MODIS
images (denoted by “Fusion”), and between a MODIS image acquired at nadir and
MODIS images on successive days (denoted by “MODIS”) for the NE site. Values of
surface reflectance in both the red (Fig. 10A) and NIR (Fig. 10B) bands are compared
for cloud-free MODIS observations between September 11 and October 13, 2000.
MODIS images acquired at different view zenith angles are corrected to nadir viewing
based on the method described in Section 3.3.
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blurring effect of large view angles and the reduced number of swath
pixels that are necessary to cover the same area are apparent when
comparing near nadir with off-nadir images.

Quantitative comparisons of the predicted and observed MODIS
off-nadir images (i.e. Fig. 8C and D) are illustrated in Fig. 9. Correlations
were found to be high for cloud-free pixels with the R2 values of 0.94 for
the NIR band, and 0.85 for the red band. The lower R2 values in the red
band are probably due to stronger atmospheric scattering in the red
band than in the NIR band. Some values deviate from the 1:1 line,
particularly for the red band (left column in Fig. 9). Close examination
of these outliers reveals that many of them are in close proximity
to pixels flagged as clouds in the MODIS metadata. Many of these out-
liers are removed when using the 3 pixel buffering approach (middle
column in Fig. 9). The outliers are likely pixels partially covered with
clouds, as the observed reflectance is generally anomalously high.

The high R2-values between observed and predicted MODIS off-
nadir images (51° view zenith angle) demonstrate that we have
successfully modeled the primary components of the MODIS sensing
process. However, due to the limited range of view angles in the Landsat
data, our predictions of MODIS data are essentially for near-nadir view.
As a result, the BRDF effects of the land surface undermine the relation-
ship as the viewing and solar geometry of MODIS observations vary
every day. For example, the predicted values of surface reflectance
are biased as indicated by a large mean error of 0.044 in the NIR band
(middle column in Fig. 9). In comparison, the BRDF correction approach
can effectively shift the predicted surface reflectance closer to the 1:1
line (right column in Fig. 9). Note that this BRDF correction approach
is far from perfect as we are assuming that all 30 m pixels within a
500 m MODIS grid cell have the same BRDF correction factor.

Fig. 10 further demonstrates the advantage of our fusion method
in terms of providing a better basis for comparison with real MODIS
images than the use of prior MODIS images. It shows the R2 values
between predicted and observed MODIS observations, and between
a nadir-viewing MODIS image (September 27, 2000) and MODIS
images on successive days. BRDF correction was performed for MODIS
images acquired at different angles using a similar approach as
described in Section 3.3. The pattern from the fusion method for one
day (shown in Fig. 9) is repeated for the others: higher R2 values for
the NIR than the red band, and the R2 values routinely above 0.85 in
theNIR and 0.75 in the red bands. In comparison, the R2 values between
successive days of BRDF-corrected MODIS images are significantly
lower. They range from about 0.65 to 0.75 in the NIR and vary widely
in the red band, averaging less than 0.6. Similar to the comparisons
with the predicted MODIS images, the R2 values for the NIR band are
higher than for the red band, probably due to the atmospheric effects.
It is important to remember that these comparisons of MODIS data
are against a nadir image, and the size of MODIS footprints changes as
the view angle increases. In some regard, the results of the comparisons
of MODIS observations near nadir represent the best-case scenario, and
despite being surprisingly low, the observed R2 values are at the high
end of results we have found in other tests, e.g. using an off-nadir
MODIS reference or comparing successive days of MODIS images
without BRDF correction.

4.2. Detection of forest disturbance in the Savannah River Basin

The fusion method was applied in the Savannah River Basin (SRB)
to detect forest disturbance. For better visualization, the daily maps
of forest disturbance at MODIS scale were reprojected to UTM projec-
tion and areas flagged as disturbed draped on top of a Landsat image
(Fig. 11).

For a more detailed visual inspection of the result, an enlargement
of the cyan rectangle in Fig. 11 is displayed in Fig. 12. Results from
NDVI differencing are shown for five different days at 500 m and
250 m resolution. The red and cyan patches in Fig. 12 represent areas
of known-date (i.e. we know the disturbance date) and unsure-date
(i.e. we are not sure on the disturbance date), respectively. Yellow
lines denote the boundary of the MODIS footprints flagged as disturbed
by differencing predicted and observed NDVI. Note that all areas of
disturbance have been mapped without errors on December 28 at
250 m spatial resolution (Fig. 12j).

A relevant question is whether the fusion method can detect
changes earlier than using only Landsat data. As shown in Fig. 12,
polygon (A) flagged on October 16 by the fusion method is detectable
from the Landsat time series on November 2. The fusion method
identified this disturbance 17 days before the first possible detection
using Landsat images. Similarly, polygon (B) is detected by Landsat
on December 20, while the fusion method flags the disturbance on
December 7 (13 days earlier). The fusion method thus provides a
more precise estimate of the time of a disturbance event, which is
made possible by the higher temporal resolution of MODIS. Between
September and December in 2003, there are only 6 non-cloudy
Landsat images available but 45 Terra/MODIS acquisitions with less
than 90% cloud cover, including 15 images with a view zenith angle
less than 35°. Given the frequent cloud cover during the growing
season in this area, the fusion method has clear advantages for
detecting disturbances earlier than using Landsat data alone.

Which disturbances are detected is partially dependent on the view
zenith angles and the footprints of the observations on that day. For
example, in the 500 m disturbance maps, the bottom half of polygon
(A) in Fig. 12b is missed due to increasing observation sizes. Although
the disturbance maps shown in Figs. 12c and 12d have similar view
angles and observation dimensions, the lower part of polygon (A) goes
undetected due to the varying centers and orientations of the MODIS
swath observations. The 250 m disturbance maps (Figs. 12f-j) better
match the shape of the reference polygons and detect smaller changes
(e.g. polygon D in Fig. 12j) simply because of the finer resolution.

In addition, errors of commission are present in the disturbance
maps generated at both resolutions (Fig. 12c and e; and h and i).
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Fig. 11. A 30 m map of forest disturbance produced by the fusion method for December 28, 2003. For better visualization, disturbance maps at MODIS scale were reprojected to
30 m to match Landsat data. The backdrop is a 15 m Landsat ETM + panchromatic image collected on November 23, 2002. The cyan rectangular is shown in Fig. 12.
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These footprints cover an area (polygon C in Fig. 12c) that was identified
as forest thinning in the previous year (late 2002), possibly contributing
to the confusion in this location.

4.3. Accuracy assessment of the change detection results

The errormatrix in Table 1 shows high producer's and user's accuracy
for the forest-disturbance class at 250 m resolution. The fusion method
is able to detect >40% subpixel forest-disturbance with a producer's
accuracy of 81% and a user's accuracy of 90%. The accuracies for
undisturbed class and the overall accuracy are above 95%.

It is worth noting that the producer's accuracies decrease from 92%
to 62% while the user's accuracies increase from 83% to 92% as the
definition of forest-disturbance decrease from >60% to >20% (Table 1).
The reasons are as follows: as the definition of forest-disturbance de-
creases, the number of disturbed pixelswith a relatively subtle difference
in reflectance between observed and predicted image will increase,
which result in larger omission errors and thus lower producer's accura-
cy. On the other hand, the number of undisturbed pixels remains the
same for all thresholds while the number of pixels correctly flagged
as forest-disturbance will increase. Thus, the percentage of commission
errors will decrease resulting in a higher user's accuracy. For these
reasons, the producer's accuracy of 92% for >60% subpixel disturbance
(Table 1) indicates that large patches of forest-disturbance are detected
with low omission errors, and the user's accuracy of 92% for >20%
subpixel disturbance indicates a low level of errors of commission.

Given low errors of commission, the detection rate shown in Table 2
demonstrates that disturbed patches down to about 5–7 ha are consis-
tently detected in this study area. The minimum detectable patch of
forest disturbance was investigated by examining the detection rates
for 27 patches of forest disturbance. The patches examined varied in
size with 18 patches being between 5 and 10 ha. The detection rate is
high (at least 80%) for patches larger than 7 ha and becomes more
inconsistent for patches smaller than 5 ha. In addition to assessing the
daily detection rate, the rate was examined for maps composited over
16 days. A patch of forest disturbance was considered detected if it
was flagged by any of the disturbance maps over a 16-day period.
The detection rates for the composites are higher than the daily detection
rates for all examined patches (Table 2).

5. Discussion

5.1. Minimum detectable patch size

When assessing the performance of a change detection method, the
minimum detectable patch size is an important measure. Setting a
general requirement for the minimum detectable patch size is difficult
as the nature and scale of forest disturbance may vary considerably.
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Fig. 12. Close-up of the cyan rectangle in Fig. 11. Results at both 500 m (top panel) and 250 m (bottom panel) are presented for five days with different view zenith angles.
The yellow lines show the footprints of MODIS swath pixels flagged as forest disturbance.
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Due to the coarse spatial resolution and varying footprints of MODIS
data, per-pixel characterization of forest disturbance is challenging.
Minimum detectable patch sizes reported in other MODIS-based
change detection systems (e.g. Bucha & Stibig, 2008; Ferreira et al.,
2007; Shimabukuro et al., 2006) are usually in the range of 15–50 ha
(i.e. several 250 m pixels) although the average patch size of forest
disturbance is typically less than 10 ha (Table 3). In other words, even
if accurate, a change detection system operating at minimum scales
of 15–50 ha may inherently underestimate the amount of human-
induced forest disturbances. For example, the average size of disturbed
Table 1
Error matrix generated by cross-tabulating reference and disturbance maps (NDVI, 250 m
flagged as undisturbed and forest disturbance (FD) for varying proportions of MODIS subpix

Reference maps

FD > 60% FD > 50% FD > 40%

FD 3976
Undisturbed 337
FD 5440
Undisturbed 805
FD 6962
Undisturbed 1603
FD
Undisturbed
FD
Undisturbed
Producer's [%] 92 87 81
Overall [%] 99 99 98
patches in this study is 5 ha with only 3% of the patches larger than
25 ha.With aminimumdetectable patch size of 25 ha, 97% of the forest
disturbance would go unnoticed.

A change detection system based on daily image acquisitions
that could detect disturbance MODIS pixel or subpixel level would
contribute significantly to the monitoring of forest disturbance.
With the methodology presented in this paper, per-pixel detection
of forest disturbance based on MODIS data is possible as pairs of
predicted and observed images are matched precisely in terms of
footprints and sensor responses. However, the rather limited set of
resolution). The matrix shows the number of pixels in the disturbance maps correctly
el disturbance.

Undisturbed User's [%]

FD > 30% FD > 20%

789 83
134,615

789 87
134,615

789 90
134,615

8389 789 91
3121 134,615

9539 789 92
5863 134,615

73 62
97 96
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Table 2
The detection rate at the polygon level for a number of patches of forest disturbance
ranging from 2.1 to 113 ha in size. Forest disturbance maps were produced by image
differencing of NDVI. The analysis includes cloud-free MODIS pixels from September
to December in 2003. Bolded and underlined results are patches that can be detected
with high rates (> = 80%) on a daily basis.

Patch size [ha] Detection rate (%)

Daily 16-day composite

113 100 100
18.8 100 100
14.4 100 100
11.1 80 100
9.2 93 100
8.8 87 100
8.3 100 100
7.7 87 100
7.5 87 100
7.3 93 100
7.3 80 100
7.1 93 100
7.1 80 100
6.9 63 80
6.6 87 100
6.2 93 100
6.0 92 100
5.8 50 83
5.6 47 86
5.3 93 100
5.1 53 86
4.9 81 83
4.2 7 17
3.1 90 100
3.0 27 33
2.8 0 17
2.1 55 83
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patches (27 in total) is insufficient for determining a final detectable
minimum patch size. The investigation is also confined to only one
location (the Savannah River Basin) further reducing the robustness
of the results. A more thorough accuracy assessment involving more
samples, preferably across larger areas, is needed to determine the
smallest area of disturbance detectable.
5.2. Near real-time monitoring

The presented methodology is capable of monitoring forest
disturbance in near real-time. Required inputs for making predictions
of MODIS data were obtained from Landsat data in previous years
(2001–2002), and forest disturbance was mapped by comparison
to daily MODIS data in the subsequent year (2003). In essence, a
disturbance map can be produced as soon as a new MODIS image is
acquired.

A systemmonitoring forest disturbance at high spatial and temporal
resolution would provide valuable information for managing and
protecting forests. For example, ongoing projects in Brazil (INPE,
2002) attempt to identify areas 25 ha or larger of forest disturbance in
the Amazon Basin every 2 weeks based onMODIS data. If the proposed
method can detect disturbance less than 10 ha, it would offer a valuable
contribution to such projects.
Table 3
The average patch size of forest disturbance for a few locations, as reported in the literature.

Places Patch size (ha) Sources

Romania 7.9 Olofsson et al. (2011)
Ukraine 4.8–9.3 Kuemmerle et al. (2007)
Slovakia 3.0–5.7 Kuemmerle et al. (2007)
Poland 1.7–4.0 Kuemmerle et al. (2007)
Rondônia, Brazil b5 Ferraz et al. (2005)
Savannah River Basin, U.S. 5 This study
Another question concerns how frequently we need observations
to identify forest disturbances with confidence. A forest disturbance
is persistent, such that if a patch of disturbance is detected in several
successive days the probability of it actually being forest disturbance
is likely to increase significantly (Pouliot et al., 2009). The results in
Table 2 also show higher detection rate based on 16-day composites
than based on daily data. Therefore, one direction for future research
will be how to integrate the results over successive days to improve
the change detection and minimize errors. One possible solution
is to provide a “possible change” flag the first time a disturbance
is detected and a “confident change” designation after consistent
detections.

5.3. Future improvements

In this study, careful consideration has been made to match the
predicted and observed MODIS daily images precisely. Subsequent
change detection has shown to work well even with a basic algorithm
of image differencing. Still, the fusion method needs refinements, and
its performance could be further improved.

First, predicting Landsat images for any given day is critical as
it forms the basis for predicting dailyMODIS images. Accurate prediction
is dependent on the availability of Landsat images, which is of concern
outside the United States (Kovalskyy & Roy, 2013). For many parts of
the world, few or none Landsat images from the 1990s are available in
the USGS Landsat archive. Since the implementation of the Landsat-
based prediction model requires twelve clear Landsat observations
to make a prediction (Zhu et al., 2012) and since we are comparing
predictions to MODIS observations, which are available from 2000, this
is less of an issue. However, cloud cover in the humid tropics and snow
cover at high latitudes are likely to reduce the availability of useful
Landsat images.

Second, improving the correction for bi-directional reflectance
effects is likely to enhance the performance of the methodology.
We have tested an automated correction approach based on MODIS
standard products and integrating the quality control data in the
MODIS BRDF product (MCD43A1) may be necessary in future tests
(Roy et al., 2008). In addition, this approach is far from perfect as
we are assuming that all 30 m pixels within a MODIS grid cell have
the same BRDF correction factor. Future improvement should include
exploration of other correction approaches. One approach is to use
a land cover map at fine resolution, and apply different BRDFs for
each land cover type, following the efforts of MODIS albedo validation
(Liang et al., 2002; Roman et al., 2010).

Third, the method used to infer changes between predicted and
observed observations influences the accuracy strongly. Only the most
basic method of image differencing was tested. The thresholds were
determined empirically for a relatively small area, and applying these
over large areas could be problematic. Since more advanced methods
have been applied for change detection based on remotely sensed
images (Lu et al., 2004), further testing of other methods is necessary as
robust non-empiricalmethods are preferable for large-scale applications.

Fourth, many of the commission errors identified in the accuracy
assessment were in locations where the forest disturbance occurred
prior to the study period. Since the predicted time-series was based
on one year of observations prior to the study period, the time-series
model incorrectly identifies these areas as intact forest, which results
in commission errors when the predictions are compared to actual
observations. The new implementation of the Landsat-based prediction
model does not need a full year of data but twelve clear observations to
initiate the prediction (Zhu et al., 2012). Future versions of the fusion
method will make use of this updated algorithm, which is likely to
decrease the number of commission errors.

Finally, this method needs to be evaluated in other locations.
This would allow for a better evaluation in terms of minimum de-
tectable patch size and near real-time performance. Hotspot areas
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of deforestation and forest degradation such as the Amazon Basin,
Congo Basin, and Southeast Asia would be suitable locations for
further evaluation.
6. Conclusions

In this study, we present a novel approach for near real-time
monitoring of forest disturbance using a combination of MODIS and
Landsat data. Fusion of Landsat and MODIS data shows promise for
providing a more robust baseline for comparison with new MODIS
images than using previously collected MODIS images. Correlations
between predicted and observed MODIS images were found to be
high with R2 values routinely above 0.85 for the NIR band and 0.75
for the red band. Comparing gridded MODIS BRDF-corrected observa-
tions at nadir and on consecutive days only yields the R2 values in the
range of 0.65–0.8 in the NIR band and about 0.5 in the red band. As a
result, the presented methodology was able to detect 40% subpixel
disturbance with a producer's accuracy of 81% and a user's accuracy of
90%. Although limited, accuracy assessment at polygon-level suggested
that patches of forest disturbance down to about 5 to 7 ha could be
detected consistently.

Our work also demonstrates the importance of view angle effects
of MODIS data. The footprints and the center points of MODIS swath
observations vary considerably from day to day, and the spectral
signatures in the same grid cell are inherently different from each
other. This problem undermines the use of MODIS daily products
for change detection. The fusion method circumvents this problem
as the varying MODIS footprints are explicitly handled, such that
pairs of predicted and observed MODIS images are matched precisely.

The nature of this study is a pathfinder toward providing a stand-
alone product that monitors forest disturbance globally in near real-
time. Such products would be of great importance to protect forested
areas efficiently and ensure the sustainability of our Earth system.
Whenmore Landsat-like satellite systems (e.g. Landsat Data Continuity
Mission, Sentinel 2) become available, monitoring of forest disturbance
in near real-time will be made easier as the frequency of observations
will increase. In the meantime, the proposed method of fusion of
currently available MODIS and Landsat data, though computational,
shows the potential in the domain of near real-timemonitoring of forest
disturbance.
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