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A B S T R A C T

The use of remote sensing in time series analysis enables wall-to-wall monitoring of the land surface and
is critical for assessing and understanding land cover and land use change and for understanding the Earth
system as a whole. However, variability in remote sensing observation frequency through time and across
space presents challenges for producing consistent change detection results throughout the available satellite
record using approaches such as the Continuous Change Detection and Classification (CCDC) change detection
methodology. Here we investigate new modifications to this methodology with the goal of improving accuracy
and consistency in results and increasing flexibility for operational usage and future development. The modified
method (Band-First Probability, or CCD-BFP) change detection procedure works by calculating a test for each
band through time before summarizing between bands. We evaluate the CCD-BFP method compared to an
existing implementation of CCDC using a variety of approaches, including a validation dataset of human-
interpreted locations, comparison with data from fire events, use of simulated remote sensing data, and
qualitative inspection of areas of interest. We find CCD-BFP improves consistency across time and space
compared to the existing implementation of CCDC, with more similarity in rates of change across Landsat
swath boundaries and before and after the launch of Landsat 7. Also, we find that CCD-BFP detects more of
the change events in the validation dataset while reducing the overall number of change detections, indicating
that it is able to more accurately capture the most notable land surface change events.
1. Introduction

Comprehensive monitoring of changes on the Earth’s surface is cru-
cial for understanding the Earth system. Understanding the causes and
consequences of land cover and land use change informs assessments
of hazards, global change, food supply, urbanization, and other areas.
Information on the specific location and timing of land change is critical
for land management and decision support. This information relies
on systematic and accurate monitoring enabled by the consistent and
continuous collection of remote sensing data with operational missions
such as the Landsat satellite program.

Repeated remote sensing observations are essential input data for
monitoring the location and timing of land surface change, enabling
land change to be observed with high temporal and spatial resolu-
tion (Woodcock et al., 2020). Change detection performed on dense
satellite time series data has become increasingly feasible in recent
years, due to improvements in processing power and data availabil-
ity (Gómez et al., 2016; Wulder et al., 2018). The 50+ year Landsat
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archive provides an extensive and radiometrically consistent record
for change detection (Dwyer et al., 2018). However, the availability
of observations is not consistent across time and space, with more
observations available after the launch of Landsat 7, in swath overlap
locations, and in locations with less cloud cover (Egorov et al., 2019).
To harmonize across the full record of Landsat, it is important to con-
sider approaches for consistent change detection, with similar detection
likelihood throughout but increased confidence and resolution when
more data are available.

To improve understanding of land change across the United States,
the U.S. Geological Survey has implemented Land Change Monitoring,
Assessment, and Projection (LCMAP; Brown et al., 2020). The first
data release from LCMAP, LCMAP Collection 1.0 (U.S. Geological Sur-
vey, 2020b), used the Continuous Change Detection and Classification
(CCDC) algorithm introduced by Zhu and Woodcock (2014). CCDC
has two components, change detection and classification. The change
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detection results serve as input to the classification routine but can also
be generated and analyzed independently. The goal of change detection
is to identify notable events occurring on the land surface, either
associated with a change in land cover or that occur within a particular
land cover class. For the purposes of this investigation, we focus on
improving the change detection portion of the CCDC algorithm, which
we refer to as CCD.

In this study, we present a modification to the CCD method with
the goal of improving accuracy and robustness in dealing with differing
observation availability. Further benefits of the approach are that it is
designed to enable regular use in an operational setting and flexibility
for future method development. The modified method is referred to
as Band-First Probability (CCD-BFP) and the LCMAP implementation
of CCD is referred to as CCD-LCMAP. We provide a brief overview of
challenges in the CCD-LCMAP change detection method, outline the
set of improvements incorporated in CCD-BFP, and perform an initial
evaluation of CCD-BFP performance.

2. Methods

2.1. Change detection algorithm

The CCD-BFP method is a modification of the LCMAP implementa-
tion of the CCD change detection algorithm, available at
doi:10.5066/P90V8IIX as the Python package pyccd. Descriptions of
the CCD algorithm are available in publications (Zhu and Woodcock,
2014; Zhu et al., 2015; Xian et al., 2022), and in LCMAP documen-
tation (U.S. Geological Survey, 2020a). Briefly, input data are U.S.
Landsat Analysis Ready Data (ARD; Dwyer et al., 2018). A time series
of reflectance values is extracted for each 30 m pixel location. The
procedure steps forward through dates in the time series, testing for
change at each date. The time series for each band is fit up to a date
to be tested for change, and the change test is based on a comparison
between the measured and predicted reflectance of a set of consecutive
Landsat observations.

The CCD-BFP has a different calculation of the change test than
CCD-LCMAP. Details of the CCD-BFP algorithm are available in Ap-
pendix A. Conceptually, CCD-BFP calculates the probability of a change
for each individual Landsat band first and then combines the bands in
a final calculation, while CCD-LCMAP calculates a total probability of
change by first combining all bands for each individual Landsat obser-
vation and then summarizing the observations. The CCD-BFP approach
addresses the challenge of outlier Landsat observations by assuming
each observation has a set probability of being an outlier. To improve
consistency across the varying frequency of available Landsat observa-
tions, CCD-BFP enforces a minimum spacing between observations in
its change test.

2.2. Evaluation of the algorithm

We utilized multiple approaches to evaluate the CCD-BFP algorithm
and compare it to the CCD-LCMAP algorithm. Each evaluation ap-
proach has strengths and weaknesses, so the use of multiple approaches
to evaluation increases confidence in the robustness of improvements.
Evaluation approaches included the following:

• Qualitative inspection of results in locations of interest. Qual-
itative evaluation of mapped results provided insight into the
performance of the approaches, and can show anomalies, for
example at the boundary between Landsat swaths. We also looked
at rates of change through time to evaluate the effects of differing
data availability.

• Comparison against the analyst-interpreted change dataset of Zhu
et al. (2020) (see Section 2.2.1). This approach provided quanti-
2

tative accuracy evaluation. C
• Comparison with fire events mapped by interpreters (see Sec-
tion 2.2.3). Fire events are an especially effective omission error
test because they are conspicuous change events over large areas
at a known time. Biases in fire detection in areas with topography
had been noted by the LCMAP team in qualitative reviews of the
product releases, so here we compare fire detection at varying
aspect and slope.

• Running CCD on synthetic data with known properties, i.e., sim-
ulating very well-behaved Landsat data (see Section 2.2.4). We
used simulated data to test for commission error in random data
and to test the sensitivity of the approaches for known magnitudes
of change.

Evaluation covers the period of the LCMAP CONUS (Conterminous
United States) Collection 1.0 products (1985–2017 for products, or
1982–2017 for input data; U.S. Geological Survey, 2020b). This ap-
proach allows for direct comparison of CCD-BFP results and released
LCMAP products, while still providing a long (33-year) period for
analysis. Quantitative evaluations mainly utilized the Time of Spectral
Change (SCTIME) LCMAP product, which contains date of change
information produced by CCD-LCMAP, but the Primary Land Cover
(LCPRI) product was also consulted for context. The LCPRI product
contains an eight-class thematic land cover legend.

2.2.1. Change in a set of interpreted locations
For error comparison, we used the validation dataset from Zhu

et al. (2020). This dataset contains plot locations that include human-
interpreted change events for 1982–2012, refined from Cohen et al.
(2016). The causal agent for each event was interpreted using Land-
sat time series, high resolution images (in Google Earth), and other
ancillary data. Causal agents include Harvest, Fire, Stress, Wind, Me-
chanical, Hydrology, and Other. We focus particularly on Harvest as
this is the type of abrupt event that we expect CCD to detect, and also
this is the most frequent type of event in the dataset so a substantial
sample is available.

We ran both CCD-LCMAP and CCD-BFP on Landsat time series data
for the plot locations in this dataset and recorded the total number
of change detections found in 7222 plot time series. Omission error is
calculated as the fraction of the change events in the database that
do not have a matched CCD change detection occurring within ±1
year of the change period in the database. We used the offset of ±1
year because we are more interested in the broad performance of the
algorithm than in the details of small interpreter/CCD disagreements.
We exclude Structural Decline and Growth/Recovery change types from
overall error calculations as CCD targets abrupt change as opposed to
more gradual processes.

We calculated commission disagreement as the fraction of changes
detected by CCD that did not occur within ±1 year of a change event
period in the dataset. We refer to this as commission disagreement in-
stead of commission error because we expect that there could be events
on the ground that are associated with a substantial change in the
surface reflectance and yet do not meet the definition of change used
by the interpreters. For example, ecosystems affected by drought might
have lasting shifts in species composition with no change in land cover
class. We expect commission disagreement to be a combination of this
definition uncertainty and commission error in the sense that change
was detected despite no substantial change in surface reflectance.

We also ran CCD-BFP across the dataset using a range of alterna-
tive threshold cutoff values for the probability of change (from 10−5

hrough 10−15) to investigate the sensitivity of the CCD-BFP algorithm.

.2.2. Landsat data
For evaluating the CCD-BFP algorithm performance with remote

ensing data, we used Landsat Collection 1 U.S. ARD (U.S. Geological
urvey, 2020c) as input data. We accessed the archive of Landsat

ollection 1 used as input data for LCMAP and retrieved observations
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between the launch of Landsat 4 in 1982 and December 31, 2017 (the
time range of LCMAP Collection 1.0 input data). Multiple Landsat ARD
tiles of CCD-BFP results were produced in the course of evaluating the
CCD-BFP algorithm, as well as smaller subsets and sample sites. Results
from the Landsat ARD tiles h03v09, h12v15, and h14v09 are discussed
in the results section.

We randomly selected 4000 ‘‘chip’’ locations to compare change fre-
quency across CONUS. There are 892 852 100 pixel × 100 pixel
(3 km × 3 km) chips entirely within the LCMAP CONUS footprint; we
assigned random numbers to all and then selected the first 4000 chips
from the LCMAP archived copy of the Landsat Collection 1 dataset.

2.2.3. Fire severity evaluation
To evaluate algorithm performance in detecting events that cover

more area than a single 30 m location, we utilized fire data from Mon-
itoring Trends in Burn Severity (MTBS, U.S. Geological Survey, 2021).
We plot agreement between MTBS and CCD rather than error because
MTBS is not intended as a validation dataset, and the definition of
change is not necessarily the same for CCD and MTBS. However, large
disagreements are expected to generally be errors in CCD rather than
MTBS because creation of MTBS products involved human interpreters.
We downloaded CONUS Burn Severity Mosaics for the years 1985–
2017 and extracted all pixels flagged as low, moderate, or high severity
within the area of the Landsat ARD tile h03v09 (located in California),
which was selected as it had a variety of mapped fires throughout the
study period. We also downloaded CONUS Burned Areas Boundaries
datasets for 1985–2017 and extracted fire ignition date for all of the
burned locations in h03v09. The ARD tile h03v09 was selected as it
had a variety of mapped fires from throughout the study period. Fire
pixels were considered to agree if a CCD change detection occurred
within ±2 years of the ignition date of the fire. To compare fire change
detection across varying land surface topography, we used the 30 m
slope and aspect datasets utilized as ancillary data for LCMAP land
cover classification (U.S. Geological Survey, 2020a).

2.2.4. Simulated data
We simulated multi-band time series data to evaluate algorithm

performance when the time series behavior is fully understood. To
produce simulated data, normally distributed noise was added to a
constant value (reflectance of 0.15, scaled to 1.5 × 103 for input to
pyccd), optionally with a change in the constant value at a known
time. All bands utilized for change detection were simulated with the
same underlying pattern and the same standard deviation for the added
random noise, but with different noise values. The standard deviation
used was 0.02 in units of reflectance, to allow for a range of simulated
change magnitudes both more and less than the standard deviation.
Simulated observations were generated at a Landsat-like frequency of
one every 16 days, with no simulated masked or cloud observations.

To evaluate commission error, we developed four synthetic datasets
for comparing the performance of the CCD-LCMAP and CCD-BFP algo-
rithms. Each dataset was produced with 100 000 simulated time series.
The ‘‘basic’’ dataset had uncorrelated noise. The ‘‘autocorrelation’’
dataset had autocorrelation in the noise values for observations near
each other in time, but with fully independent bands. The ‘‘corre-
lated bands (all)’’ dataset was produced with correlation between the
noise values for the bands for each date, and the ‘‘correlated bands
(visible/SWIR)’’ dataset was produced with correlation between the
blue/green/red bands and between the two SWIR (shortwave infrared)
bands.

We produced simulated time series with changes in the reflectance
to test the sensitivity of the CCD versions. We produced time series
with change of varying magnitude (reflectance change of 0 to 0.1) and
at a range of different dates (0 to ∼ 13 years), with 100 simulated time
series for each combination of change magnitude and change date.
3

Table 1
Number of validation changes detected by CCD.

Validation Changes detected

changes CCD-LCMAP CCD-BFP

Harvest 1048 698 (67%) 791 (75%)
Mechanical 332 209 (63%) 211 (64%)
Fire 184 108 (59%) 134 (73%)
Hydrology 77 54 (70%) 51 (66%)
Wind 14 6 (43%) 11 (79%)

Total detections 4893 4312

2.3. Processing details

The implementation of both CCD-LCMAP and CCD-BFP was based
on the pyccd code used in LCMAP, written in Python. The qualitative
Landsat evaluation data were run on the U.S. Geological Survey (USGS)
Denali supercomputer (USGS Advanced Research Computing, 2022).
Mapping and spatial analysis was done in QGIS (QGIS Development
Team, 2016), change accuracy calculations were done in Julia (Bezan-
son et al., 2017), and some analysis of LCMAP Collection 1.0 data was
done using the Interactive Data Language 8.7 (IDL) programming lan-
guage and ENvironment for Visualizing Images 5.5 (ENVI) geospatial
analysis software from Harris Geospatial Solutions.

For comparisons of the ARD tile h03v09 and qualitative compar-
isons of CONUS locations, we utilized LCMAP Collection 1.0 products
as the CCD-LCMAP version for comparison to CCD-BFP because the
algorithm and input date ranges are the same for LCMAP Collection
1.0 and the CCD-BFP run. We re-ran the 4000 random chip locations
with CCD-LCMAP in order to compare processing times.

We used a Landsat scene boundary shapefile from U.S. Geological
Survey (2018) to categorize locations as either scene center or swath
overlap. For the 4000 random chips, we categorized the entire chip as
either scene center or swath overlap based on the center of the chip.

3. Results

The CCD-BFP method generally identified more of the events in the
validation dataset of Zhu et al. (2020) than the CCD-LCMAP method,
while having fewer total change detections across all plots in the
dataset (Table 1). The total detections are all changes detected by CCD
in the 7222 plots in the validation dataset, including those associated
with Stress or Other events and those not associated with any event in
the validation dataset. More changes were identified by CCD-BFP than
by CCD-LCMAP for four of the five abrupt change categories (Harvest,
Mechanical, Fire, and Wind). More Hydrology changes were identified
by CCD-LCMAP than by CCD-BFP. For the largest category of change
(Harvest), varying the threshold for change detection in CCD-BFP pro-
duced a well-behaved relationship, with an increase in commission
disagreement associated with a reduction in omission error (Fig. 1).
Both omission error and commission disagreement were reduced in
CCD-BFP compared to CCD-LCMAP.

Fewer changes were flagged by CCD-BFP than CCD-LCMAP in the
4000 chips randomly distributed across CONUS. CCD-LCMAP detected
37 430 730 changes in the 4000 chips and CCD-BFP detected 30 160 935
changes (∼19% fewer). This result indicates that CCD-BFP, with the
current threshold, is less sensitive to change overall despite detecting
more of the change events in the validation dataset. This is potentially
positive because excessive sensitivity to spectral change can increase
the risk of misclassification and mischaracterization of land change in
the subsequent assignment of land cover types.

The potential for observational bias in CCD-LCMAP was noted pre-
viously by Brown et al. (2020). Indeed, locations in the random dataset
saw increased change detection frequency with CCD-LCMAP after the
Landsat 7 launch in 1999 and also a decrease in change detection

frequency in 2012 (when only Landsat 7 data were available; Fig. 2).
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Fig. 1. Omission error compared to commission disagreement for different versions of CCD in the full set of validation plot locations. Omission error is for (a) harvest events and
(b) all change. An event marked in the dataset is considered to be omission error if a CCD change detection does not occur within ±1 year of the event date range. A change
event in CCD is considered to be commission disagreement if it does not occur within ±1 year of an event date range. See also Supplement Table B.3 for data values.
Fig. 2. Change detection through time for CCD-LCMAP and CCD-BFP. Both versions of CCD were run within 4000 randomly selected chip locations from across CONUS. For each
year the percentage of 30 m locations with change was calculated for each chip, and then summarized across chips by plotting the value for the median chip. Years with data
availability for Landsats 4, 5, 7, and 8 are shown at the top.
However, in CCD-BFP, change detection occurred with a more similar
frequency before and after 1999, with a slight increase in change
detections through time. For both, change detection was decreased in
the final year (2017) due to not having enough observations to confirm
change at the end of the time series. Extending the time series with data
after 2017 would be expected to increase change detections in 2017.

Fewer changes were detected early in CCD-BFP, especially in scene
center locations, with more detections in CCD-LCMAP than CCD-BFP
for 1985–1988 despite lower detection frequency for the rest of the
pre-Landsat 7 era (1989–1998). Omission error was higher for 1985–
1988 for CCD-BFP than CCD-LCMAP, although both had high omission
error compared to later years ( Table 2). For the rest of the validation
study period, omission error was substantially lower for CCD-BFP than
CCD-LCMAP, for both scene center and swath overlap locations. The
omission error rate was more consistent between time periods and
4

swath locations for CCD-BFP (range: 16.8% to 22.5%) than for CCD-
LCMAP (range: 22.1% to 48.3%). The CCD-LCMAP omission error for
1989–1998 in swath overlap locations was particularly high (48.3%),
which is notable because observation availability is expected to be gen-
erally similar for 2000–2011 in scene center (22.1% omission error).
Swath overlap locations for 2000–2011 have the highest (post-1988)
omission error for CCD-BFP (22.5%), suggesting that the CCD-BFP ap-
proach is not entirely consistent in its treatment of differing observation
densities, although it is a substantial improvement over CCD-LCMAP.

Commission disagreement was slightly lower on average for CCD-
BFP than for CCD-LCMAP. Although CCD-LCMAP commission disagree-
ment was quite uniform across time and between scene center and
swath overlap (range: 42.2% to 43.6%), CCD-BFP commission disagree-
ment was higher for 1989–1998 and lower for 2000–2011. The valida-
tion dataset has ∼39% more events per year in the period 2000–2011
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Fig. 3. Number of change detections through the study period (1985–2017) per 30 m location for a site in a western Texas, USA, that is dominated by semiarid grass/shrub.
Change detections related to precipitation are common in the region. Approximate Landsat scene boundaries are shown as light blue lines; the line running down the center of
each image depicts a swath boundary between scene center (west) and swath overlap (east). Total number of change detections shown for (a) CCD-LCMAP and (b) CCD-BFP. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Omission error and commission disagreement for change in the validation dataset.

Years Harvest omission error Commission disagreement

CCD-LCMAP CCD-BFP CCD-LCMAP CCD-BFP

Scene 1985–1988 55.7% 64.6% 50.5% 45.5%
center 1989–1998 32.7% 19.3% 42.2% 48.3%

2000–2011 22.1% 16.8% 43.4% 38.9%

Swath 1985–1988 38.2% 39.7% 45.4% 43.5%
overlap 1989–1998 48.3% 18.6% 43.6% 48.2%

2000–2011 29.6% 22.5% 42.9% 34.5%

Both 1984–1988 47.6% 53.1% 48.0% 44.4%
1989–2012 30.9% 19.7% 43.2% 42.3%

than in 1989–1998, a pattern that is not seen in the LCMAP reference
data-based change estimates (Pengra et al., 2021; Auch et al., 2022).
This indicates that the increased commission disagreement for CCD-BFP
in 1989–1998 might be attributable to reduced event identification in
the validation dataset.

In the LCMAP Collection 1.0 products, features were visible in the
pattern of change detection along the Landsat swath boundaries in
some locations, particularly in the grasslands of the Great Plains (Brown
et al., 2020). These locations tend to have frequent change detections
that are associated with drought. These swath boundary features were
not prominent in these locations for CCD-BFP (Fig. 3). In Fig. 3, change
detection was higher on the scene center side of the swath boundary in
CCD-LCMAP; in other Great Plains locations (generally, farther north)
5

we observed reduced change detection rates along the swath edge but
similar rates in the scene center and the swath overlap (Fig. 4). In CCD-
BFP we observed locations where change detection rates appeared to
be different between scene center and swath overlap, but we did not
observe any sharp lines at swath boundaries. Artifacts were noticeable
perpendicular to the Landsat swath in a few areas in both CCD-LCMAP
and CCD-BFP, related to data gaps due to the Landsat 7 scan-line
corrector (SLC) failure (e.g., in the southwestern portion of Fig. 3).

The pattern of change across CONUS was broadly similar between
CCD-BFP and CCD-LCMAP (Fig. 5a). Both versions of CCD had the
highest rates of change detection in southern CONUS grass/shrub loca-
tions, with additional high change rates in the Southeast, in areas with
substantial tree cutting activities. However, CCD-BFP had substantial
shifts in rate of change across much of CONUS (Fig. 5b). In CCD-BFP
the rates of change were decreased compared to CCD-LCMAP in high
change grass/shrub areas, but increased in the Northeast, which had
very low change rates in CCD-LCMAP.

The CCD-LCMAP method varies in detection of fire across surface
slope and aspect. Higher severity fires are more likely to be detected by
CCD-LCMAP (change within ±2 years of the ignition date), but within
a given severity, change detection is substantially decreased on north-
facing slopes compared to south-facing slopes (Fig. 6). Comparing the
low severity fires by slope, north-facing locations have very low num-
bers of change detections in CCD-LCMAP on steeper slopes (Fig. 7a),
although change detections are highest for south-facing locations when
slopes are moderately steep (20◦ − 35◦).

With CCD-BFP, fire detection frequency is generally increased over
CCD-LCMAP for all slopes and aspects. Most notably, agreement for low
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Fig. 4. As in Fig. 3, number of change detections through the study period (1985–2017) per 30 m location for a site in southern Nebraska, USA. This site is also semiarid
grass/shrub, with a substantial amount of cropland. Scene line artifacts visible in CCD-LCMAP are not seen in CCD-BFP.
severity fire is increased from near 0% to almost 50% on steep north-
facing slopes (Fig. 7b). As in CCD-LCMAP, in CCD-BFP fire detection
is reduced on north-facing slopes compared to south-facing slopes,
but to a lesser extent, especially for moderate and high severity fires
(Fig. 6). Unlike CCD-LCMAP, CCD-BFP tends toward higher agreement
on steeper slopes (up to ∼ 40◦) for both south- and north-facing
locations. Both approaches have reduced agreement on the steepest
slopes (> 40◦), but these represent a small fraction of the MTBS fire
detections (< 3%).

Commission error for simulated data was much higher for CCD-
LCMAP than for CCD-BFP (Fig. 8). Commission error in CCD-LCMAP
was highest immediately after 1 year (when most of the simulated
time series initialized and change testing began). A secondary peak
in commission error occurs at approximately 1.4 years (observation
32), which is the expected time of the first re-fit of the regression
model. The full time series commission error rate for CCD-LCMAP was
moderate compared to rates of land cover conversion change for basic,
uncorrelated simulated data (0.17%), but up to an order of magnitude
higher for correlated simulated data (0.41%, 0.99%, and 2.24% for
visible/SWIR correlation, all band correlation, and autocorrelation,
respectively). For CCD-BFP, the basic and correlated bands tests had no
commission error. The only test with substantial commission error in
CCD-BFP was the all bands correlation test, with 0.46% full time series
commission error, with the highest rates of commission error around
2 years of elapsed time. The CCD-BFP autocorrelation test had three
change detections out of the 100 000 test runs (0.003% commission
error).
6

4. Discussion

Accuracy in detection of change events is improved over CCD-
LCMAP in CCD-BFP with a reduced number of total change detections.
The reduction in omission error is quite substantial after the early
period (through 1988; Table 2).

Consistency across scene boundaries is improved in CCD-BFP, with
scene boundary lines reduced in the Great Plains (Figs. 3 and 4) and no
sudden and substantial jump in change detection when Landsat 7 data
are added to the time series (Fig. 2). Although patterns are broadly
similar across CONUS, CCD-BFP is more uniform in change detection
rate across space, with fewer change detections in the southern Great
Plains and more in the Northeast (Fig. 5). Given the reduced omission
error, qualitative observations of increased detection of wind event
related changes in the North, and the difficulty of interpreting the high
levels of change in the southern Great Plains in CCD-LCMAP, the more
uniform level of change detection across CONUS in CCD-BFP is likely
to indicate an improvement in consistency of detecting change.

The reduced detection of fire on north-facing slopes seen in CCD-
LCMAP is improved in CCD-BFP (Fig. 6). The near-complete lack of
low severity fire change detection on steep north-facing slopes in CCD-
LCMAP (Fig. 7) is notable, especially the sharp difference at almost
directly east or west. Although CCD-BFP has some remaining differ-
ences between south- and north-facing slopes, the elimination of the
sharp difference and crossover between steep and less steep slopes
indicates that CCD-BFP is less biased in this way.

The CCD-BFP change detection method is able to improve change
detection accuracy while switching to a band-first calculation. The
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Fig. 5. Comparison of number of changes in CCD-LCMAP and CCD-BFP throughout the study period (1985–2017). Average changes per pixel are calculated for 100 pixel × 100 pixel
(3 km × 3 km) chips. All chips in CONUS are shown for CCD-LCMAP and 4000 randomly selected chips are shown for CCD-BFP. (a) Average number of changes per pixel for
CCD-BFP (circles) and CCD-LCMAP (underlying map). (b) Percent difference in changes per pixel from CCD-LCMAP to CCD-BFP ( BFP−LCMAP

LCMAP
), where red represents more changes

in CCD-LCMAP compared to CCD-BFP, and blue represents more changes in CCD-BFP compared to CCD-LCMAP. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
band-first approach provides several advantages. The probability cal-
culation for a single band is more straightforward than the sum of
multiple bands, which allows for easier analysis and more complex
statistical approaches. The band-first approach also has the potential for
incorporating additional data sources collected on a different temporal
schedule. Because the band probabilities are calculated first and then
combined, an additional source might be incorporated into the last step
even if the observations were from a different set of dates.

The masking approach used in CCD-BFP also has potential for future
use. A single value is used in CCD-BFP to represent the probability that
an observation is clear, but future investigation could vary this value
or incorporate a confidence level produced by a masking routine.

Although overall accuracy and consistency are increased in CCD-
BFP compared to CCD-LCMAP, some areas of concern highlight trade-
offs in the CCD approach to change detection, and are areas of potential
future research. For one, processing time is increased in CCD-BFP
(by approximately a factor of 6) due to the calculation of multiple
permutations of possible observations. Processing time can be expected
to scale up with increased input data.
7

Another area of concern is that sensitivity for change detection
increases through time in CCD-BFP, while it is relatively flat in CCD-
LCMAP (Fig. B.10). This varying sensitivity allows CCD-BFP to have
very low commission error due to random noise (Fig. 8), but reduces
change detection early in the record and means that long models will
detect change when a similar magnitude event would not be detected
in a short model. A time-dependent sensitivity adjustment was not
included in CCD-BFP in order to analyze the change detection power
and commission rate without it, but in the future it might be desirable
to investigate a sensitivity adjustment that would increase commission
error for short models and reduce power to detect change for long
models, but would be more consistent through time.

Qualitatively, we observed that locations that convert from land
cover that has high reflectance variability to land cover with low
reflectance variability are a challenge for the forward processing ap-
proach of CCD. A notable example is the development of cropland. It is
difficult to detect this type of change because in the change test only a
limited time series is used to represent the possible new model, and
reflectance variability is difficult to calculate reliably across a short
time series, especially with autocorrelation and outliers.
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Fig. 6. Percentage of burned pixels in MTBS products with a change detected by CCD
within ±2 years, by aspect. Detection of fire events is increased in CCD-BFP over
CCD-LCMAP, especially on north-facing slopes. This figure incorporates 2.5 × 107 pixels
(U.S. Landsat ARD tile h03v09) with 3 625 384 burned pixel locations. Low severity fire
(dotted lines), moderate severity fire (dashed lines), and high severity fire (solid lines)
are shown. Burned pixels in flat locations (slope < 5◦) are not included.

Several challenges remain that CCD-BFP does not address, that
might be addressed by future work. The interaction between drought
and change detection is important, especially in grass/shrub locations.
Grassland reflectance can be substantially increased in visible wave-
lengths during drought but then quickly return to expected reflectance
after receiving precipitation. This behavior is expected in a grassland,
so the desirability of detecting these types of changes within a land
cover change detection method such as CCD is dependent on user
requirements. In CCD-BFP, these types of change detections are reduced
in some areas compared to CCD-LCMAP, but still occur at a high rate.

5. Conclusions

The CCD-BFP method is an improvement over CCD-LCMAP in sev-
eral ways, including reduced omission error, improved consistency,
and increased method flexibility. Detection of known events is in-
creased while overall change rates are reduced. Sharp differences in
change detection rate in CCD-LCMAP after the launch of Landsat 7
are reduced in CCD-BFP, as are boundary lines between overlap and
scene center regions in the southern Great Plains. The method also im-
proves operational ease of use for calculating updates. Further method
improvements and parameter tuning have the potential to improve
accuracy and allow for incorporation of additional data sources.
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Appendix A. CCD-BFP algorithm description

A.1. CCD initialization and fitting

For the initial steps of data preparation, removal of data containing
clouds and snow, and initialization, CCD-BFP uses the same methods
as CCD-LCMAP. Briefly, time series data are read for each location in
the Landsat ARD Albers Equal Area coordinate grid within the area
of interest. The Landsat Quality Assessment band is used to screen
the time series for cloud, cloud shadow, and snow. Each time series
is analyzed starting over an initial span of data that passes empirical
checks for stability, before iterating through additional data to test for
change.

In CCD-LCMAP, the basis for change detection is a comparison
between a fitted model of the Landsat time series through a specific
date, and several subsequent Landsat observations. The equation used
for fitting the time series model is

�̂�(𝑡) = 𝑐0𝑖 + 𝑐1𝑖𝑡 +
3
∑

𝑗=1

(

𝑎𝑗𝑖 cos
2𝜋𝑗𝑡
𝑇

+ 𝑏𝑗𝑖 sin
2𝜋𝑗𝑡
𝑇

)

(A.1)

where 𝑦𝑖(𝑡) is the predicted value for the 𝑖th Landsat band at date 𝑡;
𝑐0𝑖, 𝑐1𝑖, 𝑎𝑗𝑖, and 𝑏𝑗𝑖 are fitted coefficients; and 𝑇 is the number of days
per year. The second (third) order harmonics are not included until
18 (24) Landsat observations are included in the model. Five Landsat
bands (green, red, near infrared, and the two SWIR bands) are used for
change detection, because the blue and thermal Landsat bands were not
found to improve results.

Because improving the calculation of the change test is the purpose
of CCD-BFP, in this paper we use a time series modeling approach that
is broadly similar to CCD-LCMAP. However, a few modifications to
the modeling approach are required to support the CCD-BFP change
test. In CCD-LCMAP, the model is fit using Least Absolute Shrinkage
and Selection Operator (LASSO). In CCD-BFP, Ordinary Least Squares
(OLS) is used. Iteratively re-fitting the model after incorporating non-
change observations is computationally expensive but has been shown
to improve accuracy (Zhu et al. 2020). In this regard, CCD-BFP breaks
with CCD-LCMAP by favoring recalculation of regression coefficients
with every new observation, rather than at progressive intervals. CCD-
BFP uses a cumulative computational approach to reduce the required
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Fig. 7. Percentage of low severity burned pixels in MTBS products with a change detected by CCD within ±2 years. This figure incorporates 2.5 × 107 pixels (U.S. Landsat ARD
ile h03v09) with 1 809 353 burned pixel locations. Results are shown for (a) CCD-LCMAP and (b) CCD-BFP. Each line is agreement for a range of slope values, with lighter shades
or steeper slopes. Agreement for flat areas (slope < 5◦) is 52.0% for CCD-LCMAP and 60.7% for CCD-BFP.
Fig. 8. Percentage of simulated time series with commission error through time (out of 100 000 simulated time series). The time of the change detections is shown on the
𝑥-axis. The ‘‘basic’’ simulated data have a uniform reflectance with normally distributed noise. The ‘‘correlated bands (visible/SWIR)’’ simulated data have correlated noise values
for all the visible bands, and correlated noise values for the two SWIR bands. The ‘‘correlated bands (all)’’ simulated data have correlated noise values for all bands, and the
‘‘autocorrelation’’ simulated data have temporal autocorrelation. Note that CCD-BFP had no change detections for basic or correlated bands (visible/SWIR), and only 3 out of
100 000 for autocorrelation simulated data.
i
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processing time. This computational approach is described in more
detail in Appendix C.

A.2. Calculation of the change test in CCD-LCMAP

The main focus of the CCD-BFP modification is on the method used
to decide whether a set of new observations is consistent with the fitted
model, or if they are different enough to be flagged as change. First,
we will describe the CCD-LCMAP change test and considerations for
modifying it, followed by the new change test method.

Change is detected in CCD-LCMAP when multiple consecutive ob-
servations after the end of the fit (Eq. (A.1)) exceed a threshold. Let M
9

r

be the set of dates for 𝑚 observations that are compared to the fit. The
change test for CCD-LCMAP is

min
𝑡∈M

( 𝜇
∑

𝑖=1

(

𝑦𝑖(𝑡) − 𝑦𝑖(𝑡)
) 2

max(𝑠2𝑖,24, 𝛼
2
𝑖 )

)

> 𝜒2
0.99(𝜇) (A.2)

where 𝑦𝑖(𝑡) is the observed value for the 𝑖th Landsat band at date 𝑡, 𝜇 = 5
s the number of bands used for change detection in CCD-LCMAP, and
𝑖,24 is the root mean square error (RMSE) of the 24 observations that
re nearest by day of year for the current model fit of the 𝑖th band. The
alue 𝜒2

0.99(𝜇) is used as the threshold for change detection.
A major advantage of this approach is that the change test is quite

obust to observations that are problematic (for example, clouds that
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were not filtered by Fmask). Summing first across the bands aggregates
measurements from a problematic observation, and using the minimum
observation for the test prevents extreme outlier observations from
having a disproportionate effect on results. Robustness to outlier ob-
servations is a critical attribute for the change test because even the
most accurate remote sensing datasets have error. Even a relatively
low number of outlier observations is a challenge for a change test
that is designed to detect change based only on a few observations,
particularly when there are multiple consecutive outliers. Multiple
consecutive outliers can be expected to occur due to random chance,
but also might be temporally correlated (e.g., a persistent weather
pattern with smoke or clouds that are difficult to detect). An alternative
change test needs to maintain this robustness to outliers.

One challenge with the CCD-LCMAP change test is that the sensi-
tivity to change is not constant through time. The peek number and
change threshold modifications at the beginning of a time series run
are meant to equalize the sensitivity to change between locations, but
do not correct for sensitivity through time. In addition, anomalies can
occur along the edge of a Landsat swath where minor orbital drift
produces locations that are in the overlap zone at some times but
outside it during others (see Figs. 3 and 4).

The CCD-LCMAP change test is semi-empirical, and its statistics
can be a challenge to analyze. For example, using the nearest 24
observations to compute the RMSE means that the seasonal period that
the RMSE is based on varies in a way that is difficult to predict. Also,
RMSE has a minimum bound in the change test (referred to here as 𝛼𝑖),
so it is not obvious to predict which factors affect the RMSE used in the
final calculation.

In CCD-LCMAP, two calculations are performed across the full time
series at the beginning of processing, for use in the change test. One,
for each wavelength band, the minimum RMSE for the change test (𝛼𝑖)
s calculated. Two, the number and frequency of Landsat observations
n the time series are used to determine the number of consecutive
bservations that will be needed in the change test to confirm a change
etection (referred to here as the ‘‘peek number’’). The peek number is
ffectively the sample size for the change detection test. The value of
he peek number is at least six and increases in dense time series with
requent observations (Zhu et al., 2020).

Using the full time series for these calculations presents several
otential complications. First, if there is a land cover change during
he study period that substantially changes the reflectance behavior, 𝛼𝑖
ill depend on the behavior of both land covers. This has the potential

o add undesirable variability; for example, the likelihood of detecting a
ire event in 1990 could be affected by whether the location underwent
evelopment in 2000. Second, the behavior of the algorithm has the
otential to differ when run across different time periods. Observation
ensity roughly doubles after the launch of Landsat 7 in 1999, so the
eek number calculation can be different depending on the time used.
deally, adding more data at the end of the time series would not
ffect change detection early in the time series. Finally, use of full
ime series calculations adds implementation complications for forward
rocessing. If new updates are to maintain consistency with previous
ata, 𝛼𝑖 and the peek number need to be saved or recalculated during
very update.

.3. Calculation of the change test in CCD-BFP

The CCD-BFP change test is intended to address some of the chal-
enges of the CCD-LCMAP change test described above, while not
ndermining its strengths. The change test in CCD-BFP has several dif-
erences from the CCD-LCMAP change test. First, the CCD-BFP change
est is based only on data dated on or after the most recent detection
f change, to avoid the conceptual and computational complications of
otentially intermixing data from multiple land surface characteristics.
ll variable parameters are calculated at the time of the change test
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nstead of using the full time series at the beginning of the procedure.
Let N be the set of dates for the 𝑛 observations in the fitted model.
xpressing the fitted model (Eq. (A.1)) in matrix form,

𝑦𝑖(𝑡1)

𝑦𝑖(𝑡2)

⋮
𝑦𝑖(𝑡𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 𝑡1 cos 2𝜋𝑡1
𝑇 sin 2𝜋𝑡1

𝑇 ⋯

1 𝑡2 cos 2𝜋𝑡2
𝑇 sin 2𝜋𝑡2

𝑇 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

1 𝑡𝑛 cos 2𝜋𝑡𝑛
𝑇 sin 2𝜋𝑡𝑛

𝑇 ⋯

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑐0𝑖
𝑐1𝑖
𝑎1𝑖
𝑏1𝑖
⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(A.3)

or 𝒚𝑖,N = 𝑿N𝒄𝑖, where 𝒚𝑖 is the vector of predicted Landsat values for
the 𝑖th band, 𝑿N is the design matrix, and 𝒄𝑖 is the vector of fitted
coefficients for the 𝑖th band.

In CCD-BFP, the first data summarization is calculated per band,
unlike CCD-LCMAP, where the first data summarization is calculated
for each observation, across bands. The probability that all observations
from M (the set of dates to test for change) are consistent with the fitted
model for the 𝑖th band (𝑝𝑖(M)) is estimated from the test statistic

𝒅𝖳
𝑖
[

𝐼 +𝑿M
(

𝑿𝖳
N𝑿N

) −1𝑿𝖳
M
] −1𝒅𝑖

𝑠2𝑖𝑚
∼ 𝐹 (𝑚, 𝑛 − 𝑞) (A.4)

where 𝒅𝑖 = 𝒚𝑖,M−𝒚𝑖,M is the vector of residuals, 𝑋M is the design matrix
for the set of observations to be tested, and 𝑠𝑖 is the mean squared
error for the fitted model. Eq. (A.4) follows the 𝐹 -distribution, with
𝑞 as the number of coefficients in 𝒄𝑖 and 𝑛−𝑞 as the degrees of freedom
for the model (Chow, 1960). The term 𝑿M

(

𝑿𝖳
N𝑿N

) −1𝑿𝖳
M in Eq. (A.4)

incorporates consideration of the error in the model fit coefficients 𝒄𝑖,
in addition to error in the new observations 𝒚𝑖,M.

To summarize across the Landsat bands, CCD-BFP uses Fisher’s
method of combining independent tests to estimate the probability that
the observations in M are consistent with the fitted models for all bands
(𝑃 (M)):

−2
𝜇
∑

𝑖=1
ln (𝑝𝑖(M)) ∼ 𝜒2(2𝜇) (A.5)

where 𝑝𝑖(M) is calculated based on Eq. (A.4) and 𝜇 is the number
of bands used for change detection. An implicit assumption in both
this method and the CCD-LCMAP change test is that all the bands
are independent, which is not the case. The CCD-BFP method has
the possibility for approaches that account for non-independent bands,
but here we use this approach for computational simplicity. All bands
are available for all observations in the current study, and alternate
approaches might be best evaluated in a study that combines multiple
data sources (e.g., visible reflectance and synthetic aperture radar).

To address the challenge of outlier observations, the CCD-BFP
method assumes that each observation has a probability 𝜆 of being an
observation that should not be included in the change detection test.
The probability that all observations are consistent with the model is
then calculated as a weighted average of all possible subsets M of the
𝓁 observations after date 𝑡:

(𝑡,𝓁) =
∑

M

[

(1 − 𝜆)𝑚𝜆𝓁−𝑚𝑃 (M)
]

(A.6)

where 𝓁 is the number of observations being tested for the detection of
change (the ‘‘peek number’’ in CCD-LCMAP) and (𝑡,𝓁) is the estimated
probability that there is a change that begins at time 𝑡. We use a
probability cutoff of (𝑡,𝓁) < 10−10 to detect change, determined
empirically to produce a similar number of change detections to CCD-
LCMAP. We use a constant 𝜆 = 0.05 for CCD-BFP as a proof of concept,
because extensive sensitivity testing of all parameters is beyond the
scope of this work.

As in CCD-LCMAP, a change detection in CCD-BFP requires multiple
observations to confirm change. Because the empty set is a subset of
M and 𝑃 (M) > 0, (𝑡,𝓁) > 𝜆𝓁 , and thus a minimum number of
observations must be examined to detect change in CCD-BFP. Change
is flagged if (𝑡,𝓁) < 10−10, so the number of observations that must be
examined to detect change is at least 8 ( log(𝑡,𝓁)

log 𝜆 = −10
log 0.05 ). Increasing

𝓁 allows for the detection of lower magnitude change.
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Fig. A.9. Flowchart for CCD-BFP algorithm.
Autocorrelation in the Landsat time series data has the potential
to increase detection of change by CCD-BFP because the probability
calculation above assumes that the new observations are independent.
When observations are frequent, short periods of autocorrelation can
increase detection of change, but when observations are less frequent,
a reflectance difference needs to be long-lasting in order to lead to a
change detection. To equalize across periods with different observation
availability, in CCD-BFP Eq. (A.6) is modified to use only permutations
where all new observations included in the calculation are separated
by at least 10 days. Ten days was selected to incorporate at most one
observation per cycle of Landsat acquisitions into the calculation of the
change test while still utilizing all observations. The equation is

(𝑡,𝓁) = 1
𝑃𝑡𝑜𝑡𝑎𝑙

∑

A
(1 − 𝜆)𝑎𝜆𝓁−𝑎𝑃 (A)

𝑃𝑡𝑜𝑡𝑎𝑙 =
∑

A
(1 − 𝜆)𝑎𝜆𝓁−𝑎

(A.7)

where A is a subset of the 𝓁 observations after date 𝑡 such that no
two observations are closer than 10 days apart and 𝑎 is the number of
observations in A. Dividing by the total possible probability normalizes
the final result to be within zero to one.

This approach to handling autocorrelation aims to reduce change
detection in areas of short-term autocorrelation while still considering
all new observations as part of the change test. It also performs the
adjustment based on conditions at the time of the change test, so the
adjustment will be appropriate for the actual number of observations
available at the time of the change test. The number of days is targeted
toward Landsat data availability to equalize toward the low end of the
typical acquisition schedule. When there is only a single acquisition
opportunity every 16 days, all observations will be included, but more
frequent observations will be affected by this modification.

The CCD-BFP method uses a variable number of new observations
to calculate the change test. The method begins by calculating the
probability that the first new observation is consistent with the time
series (𝓁 = 1). If the probability is below the cutoff threshold for
11
change, CCD-BFP will flag a change. If the probability is above a cutoff
for no change, the change test will immediately stop and CCD-BFP will
add it to the fitted model (Fig. A.9). If neither, CCD-BFP will proceed
to run the change test for the first two observations (𝓁 = 2) and check
again if the probability is low enough for change or high enough to stop
the change test. The change test will continue to add observations until
either the probability reaches one of the cutoffs, or the number of new
observations reaches the cutoff peek number (18), in which case CCD-
BFP will proceed with no change flagged. Computational approaches
to this are described in Appendix D.

The CCD-BFP change test is designed to test if any new observations
are different from their predicted values. This approach differs from
the CCD-LCMAP change test, which is designed to test if all new
observations are different from their predicted values. One advantage
of the CCD-BFP change test is that if a few new observations are close
to their predicted values, it is still possible to detect change when
other new observations are sufficiently different. For example, a change
that happens in the fall might be detected based on fall and spring
observations even if a winter observation is similar to the predicted
value. A major drawback of this CCD-BFP approach is that a change can
be detected too soon if the first new observations are close to predicted,
but later new observations are substantially different. The incremental
approach described in the previous paragraph reduces the chance for
change to be detected too soon because if the first new observation
is highly consistent with the time series, no further new observations
will be tested. However, if the first new observation is an outlier, it
is possible to detect change too soon. To reduce this possibility, we
added a routine after a change is detected to select the time of change.
If an early peek observation is not very different from the model, while
the final peek observations are above a threshold of difference, the
change will be flagged starting at the first observation that exceeds the
threshold.
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Fig. B.10. Change detection sensitivity for simulated data that has a simulated change, for (a) CCD-LCMAP and (b) CCD-BFP. Each shaded pixel in the image shows the fraction
of 100 simulated time series that had change detected by CCD, with black pixels having 100% of simulated time series with a change detection by CCD, and 0% for white pixels.
Timing of the simulated change is shown on the 𝑥-axis, and magnitude of the simulated change is shown on the 𝑦-axis. Red dotted lines show the standard deviation of the
imulated noise in the time series data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ppendix B. Extended results

Simulated data were also useful for demonstrating the sensitivity
f the CCD-LCMAP and CCD-BFP methods. Both methods had nearly
00% detection rates for change with a change magnitude more than
hree times the standard deviation of the noise and after 2 years of
lapsed time (Fig. B.10). The sensitivity was relatively even through
ime for CCD-LCMAP, while CCD-BFP sensitivity to lower magnitude
hange increased throughout the 13 years of simulated data. With CCD-
CMAP, there were a few scattered detections of change for lower
agnitude changes and a few detections when the simulated change
receded the earliest date of change CCD is expected to detect (1 year
lapsed time). With CCD-BFP, a reduction in sensitivity was noticeable
ust before two years of elapsed time, and just before three years of
lapsed time. Neither method detected change near the end of the time
eries, when not enough data remained, and both methods had reduced
etection at low change magnitudes near the cutoff time.

We additionally made qualitative observations during the evalua-
ion change detection by CCD-BFP. Although we have not performed
uantitative work to support these observations, they are potentially of
nterest. The results of the qualitative analysis follow:

• In areas that were developed during the study period, change
detection performed reasonably well in locations that were pre-
viously forest, but development from cropped land was not well
captured in either CCD-LCMAP or CCD-BFP, with the possibility
that results were worse for CCD-BFP than for CCD-LCMAP. The
surface reflectance of cropped area can be highly variable so it is
12

especially difficult to detect change. m
• Qualitatively, we observed a few instances where destruction
from wind events in northern CONUS were not well captured
in CCD-LCMAP but were detected by CCD-BFP. Although these
types of events represent only a small fraction of change, they are
relatively easy to interpret qualitatively so improvement indicates
that additional isolated improvements in results are plausible.

• Although change detections were reduced in CCD-BFP relative to
CCD-LCMAP for drought-affected locations in the Great Plains,
there appeared to be increased drought-related change detections
in areas of the southwestern United States. These locations have
more shrub land cover than the Great Plains and might see longer
persistence of drought impacts. The increased detections in CCD-
BFP sometimes produced notable SLC artifacts in swath overlap
areas.

Table B.3 is similar to Table 1 but with additional results from
CD-BFP with different change threshold values.

ppendix C. Cumulative calculation of CCD-BFP

A major goal of the CCD methodology is continuous updating,
uch that results can be updated based on additional data at the end
f the time series without affecting results earlier in the time series.
ontinuous calculation is desirable for rapid and frequent (i.e., on the
rder of days) updating of change detection results. Conceptually, all
ersions of CCD (i.e., since Zhu and Woodcock (2014)) support this
oal, but several implementation challenges produce complications.

One challenge is that the CCD-LCMAP method requires that the

ajority of the Landsat archive be read every time an update is desired.
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Table B.3
Number of changes in the validation dataset detected (±1 year) by CCD-BFP using varying thresholds for the probability cutoff.

Threshold CCD-BFP Validation

10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14 10−15

Harvest 901 889 859 844 822 791 770 732 696 665 608 1048
Mechanical 261 258 247 231 225 211 209 198 179 164 151 332
Fire 154 147 148 142 137 134 126 121 106 95 88 184
Hydrology 63 63 62 57 52 51 46 42 41 37 31 77
Wind 12 13 12 11 11 11 9 9 9 9 8 14
Other 714 683 640 584 526 470 418 366 310 271 217 796
Structural decline 176 174 164 150 142 133 120 105 97 93 82 223
Growth/recovery 2136 1868 1592 1423 1298 1184 1103 1022 956 899 846 2910

Total changes 21929 14716 10301 7437 5593 4312 3432 2789 2354 2009 1682
Changes 1985–2012 18397 12433 8756 6351 4783 3706 2971 2415 2046 1760 1484
Matched (1985–2012) 4530 3800 3270 2776 2413 2133 1868 1677 1510 1357 1158
q
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If any of the input data have been modified or are no longer available,
there will be complications with how to treat results and operational
inconsistencies. Reading the full archive for every update also presents
potential operational obstacles to frequent updating or spatial process-
ing. Also, the difficulty of reading the full archive increases through
time as the archive gets larger and could especially be more challenging
if additional data sources (e.g., Sentinel-2) are added to the process.

Another challenge is that running the model-fitting procedure from
scratch becomes more computationally expensive as the model in-
creases in length. In CCD-LCMAP, the model is re-fit only after 33%
more time is added to the time series, partly in order to reduce this
computational load. Reducing the computation required is desirable to
remove a constraint on algorithm development as well as to reduce the
processing required.

In CCD-BFP, we approach these challenges by accumulating inter-
mediate matrix products outside the fitting procedure. The current
CCD-BFP implementation only uses these matrices to speed calculation,
but they might also be used to reduce or eliminate the need to read the
full archive for an update by saving between update runs.

Variables used in this section follow those used in Appendix A. Let
𝒀 be the 𝑛-by-𝜇 matrix of the 𝑛 Landsat observations in the current
fitted model and the 𝜇 bands used for change detection. The three
arrays that are stored are the 𝑞-by-𝑞 matrix 𝑿𝖳𝑿 (the Gram matrix),
he 𝑞-by-𝜇 matrix 𝑿𝖳𝒀 , and the 𝜇 values 𝒚𝑖 ⋅𝒚𝑖. These can be computed
ncrementally, for example

𝑖,{N,𝑡𝑛+1} ⋅ 𝒚𝑖,{N,𝑡𝑛+1} = 𝒚𝑖,N ⋅ 𝒚𝑖,N +
(

𝑦𝑖(𝑡𝑛+1)
) 2 (C.1)

hen 𝑛 is large, this can produce substantial computational savings.
OLS regression is used in CCD-BFP, so the coefficient vector 𝒄𝑖 can

e solved from 𝑿𝖳𝑿 and 𝑿𝖳𝒚𝑖 using Cholesky factorization. In CCD-
CMAP and most other implementations of CCD, LASSO is used for
itting the model. The LASSO 𝒄𝑖 vector can be calculated using 𝑿𝖳𝑿,
𝖳𝒚𝑖, and 𝒚𝑖 ⋅ 𝒚𝑖, so this approach to reducing computation is also

ossible for other versions of CCD.
The sum of squared residuals is used in both CCD-LCMAP and

CD-BFP, and also can be calculated from these arrays.
2
𝑖 = 𝒚𝑖 ⋅ 𝒚𝑖 + 𝒄𝑖 ⋅

(

−2𝑿𝖳𝒚𝑖 +𝑿𝖳𝑿𝒄𝑖
)

(C.2)

o show this, let 𝑥𝑘𝑗 be the 𝑗th value in 𝑿{𝑡𝑘} (element (𝑘, 𝑗) in 𝑿), 𝑐𝑗𝑖
e the 𝑗th coefficient in 𝒄𝑖, and 𝑦𝑘𝑖 = 𝑦𝑖(𝑡𝑘).

2
𝑖 =

𝑛
∑

𝑘=1

(

𝑦𝑘𝑖 − 𝑦𝑘𝑖
) 2

=
𝑛
∑

𝑘=1

(

𝑦𝑘𝑖 −
𝑞
∑

𝑗=1
𝑐𝑗𝑖𝑥𝑘𝑗

)

2

=
𝑛
∑

𝑘=1
𝑦2𝑘𝑖 − 2

𝑛
∑

𝑘=1

(

𝑦𝑘𝑖
𝑞
∑

𝑗=1
𝑐𝑗𝑖𝑥𝑘𝑗

)

+
𝑛
∑

𝑘=1

[( 𝑞
∑

𝑗=1
𝑐𝑗𝑖𝑥𝑘𝑗

)( 𝑞
∑

𝓁=1
𝑐𝓁𝑖𝑥𝑘𝓁

)]

=
𝑛
∑

𝑦2𝑘𝑖 − 2
𝑞
∑

(

𝑐𝑗𝑖
𝑛
∑

𝑦𝑘𝑖𝑥𝑘𝑗

)

+
𝑞
∑

[

𝑐𝑗𝑖
𝑞
∑

(

𝑐𝓁𝑖
𝑛
∑
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)]
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𝑘=1 𝑗=1 𝑘=1 𝑗=1 𝓁=1 𝑘=1 f
= 𝒚𝑖 ⋅ 𝒚𝑖 + 𝒄𝑖 ⋅
(

−2𝑿𝖳𝒚𝑖 +𝑿𝖳𝑿𝒄𝑖
)

(C.3)

In CCD-BFP, the test statistic for change detection (Eq. (A.4)) re-
uires only 𝑿𝖳

N𝑿N, 𝒄𝑖, and 𝑠𝑖 from the time range of the fitted model
N). This means it is possible to compute the change test in CCD-BFP
ased only on the values in 𝑿𝖳𝑿, 𝑿𝖳𝒀 , and 𝒚𝑖 ⋅ 𝒚𝑖 (plus 𝑿M and 𝒀M
or the observations after the end of the fitted model). In CCD-LCMAP,
he root mean squared error for the nearest 24 observations (by day of
ear) is used as part of the change detection test, and this value is not
alculated based on the incremented arrays, although those arrays can
till be used in CCD-LCMAP to reduce the computational overhead of
requent model refitting.

These calculations are potentially subject to catastrophic cancella-
ion, but in CCD-BFP the number of observations is relatively modest
on the order of thousands) and the values in 𝑿 and 𝒀 are of a
omewhat similar order of magnitude even without centering. CCD-
FP utilizes 64-bit floats but does not otherwise account for numerical
ound-off. Additional consideration might be required for substantially
ncreased numbers of observations or different models 𝑿.

ppendix D. Computation of CCD-BFP change test

The CCD-BFP change test accounts for the possibility of cloud or
ther problem observations by combining the probabilities of multiple
ermutations of the new ‘‘peek’’ observations. The CCD-BFP change
est iterates across the new observations (values of 𝓁), as described in
ppendix A.3. In many cases CCD-BFP will only require a small value
f 𝓁 to reject the possibility of a change at the current date 𝑡, but when
arger values of 𝓁 are required, the computational burden becomes
rohibitive. We reduce the computation required by first calculating
he probability 𝑃 (A) for the subset A with all 𝓁 observations, then the
ubsets A with 𝑎 = 𝓁 − 1 observations, then 𝑎 = 𝓁 − 2, etc. Subsets with
arge 𝑎 will have the largest weights (1−𝜆)𝑎𝜆𝓁−𝑎. After all permutations
or a value of 𝑎 are calculated, we calculate the probabilities

𝑚𝑖𝑛(𝑡,𝓁, 𝜓) =
1

𝑃𝑡𝑜𝑡𝑎𝑙

∑

A|𝑎≥𝜓
(1 − 𝜆)𝑎𝜆𝓁−𝑎𝑃 (A)

𝑚𝑎𝑥(𝑡,𝓁, 𝜓) =
1

𝑃𝑡𝑜𝑡𝑎𝑙

(

∑

A|𝑎≥𝜓
(1 − 𝜆)𝑎𝜆𝓁−𝑎𝑃 (A) +

∑

A|𝑎<𝜓
(1 − 𝜆)𝑎𝜆𝓁−𝑎

)

(D.1)

here 𝜓 is the current minimum 𝑎 that has been computed. (𝑡,𝓁) ≤
𝑚𝑎𝑥(𝑡,𝓁, 𝜓), so if 𝑚𝑎𝑥(𝑡,𝓁, 𝜓) is below the change threshold, CCD-BFP

lags a change for this date 𝑡. (𝑡,𝓁) ≥ 𝑚𝑖𝑛(𝑡,𝓁, 𝜓), so if 𝑚𝑖𝑛(𝑡,𝓁, 𝜓) is
bove the change threshold, it is not possible to have a change for this
alue of 𝓁, and CCD-BFP proceeds to test the next value of 𝓁 without
alculating smaller values of 𝜓 . In addition, if 𝑚𝑖𝑛(𝑡,𝓁, 𝜓) is above a
igher threshold, CCD-BFP will assume there is no change at this date
and proceed to the next date without calculating larger values of 𝓁

or this date.
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