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4 Remote Sensing Time Series Image Processing

Brief Summary

Cloud and cloud shadow detection is the fundamental basis for analyzing 
Landsat time series. This chapter provides a comprehensive review of all the 
cloud and cloud shadow detection algorithms designed explicitly for Landsat 
images. This review provides guidance on the selection of cloud and cloud 
shadow detection algorithms for various applications using Landsat time 
series.

1.1 Introduction

Landsat satellites have been widely used for a variety of remote sensing 
applications, such as change detection (Collins and Woodcock, 1996; Xian 
et al., 2009), land cover classification (Homer et al., 2004; Yuan et al., 2005), 
biomass estimation (Zheng et al., 2004; Lu, 2005), and leaf area index retrieval 
(Chen and Cihlar, 1996; Fassnacht et al., 1997). Nevertheless, for decades, most 
of the analyses were based on a single or a few cloud free Landsat images 
acquired at different dates, due to the high cost of Landsat images prior to 
2008 (Loveland and Dwyer, 2012). Free and open access to the entire Landsat 
archive in 2008 has changed the story entirely (Woodcock et al., 2008; Wulder 
et al., 2012). Landsat data are being downloaded for an unprecedented variety 
of applications. Many of them require frequent Landsat observations for 
the same location – Landsat Time Series (LTS). The Landsat Global Archive 
Consolidation (LGAC) initiative has added 3.2 million Landsat images to the 
U.S. Geological Survey (USGS) Earth Resources Observation and Science 
(EROS) Center (Wulder et al., 2016), which has made time series analysis 
with LTS even more popular. Decreasing data storage costs and increasing 
computing power have further stimulated the use of LTS.

Though time series analysis based on LTS has attracted much attention, 
automated cloud and cloud shadow detection has been and remains a major 
obstacle. The presence of clouds and cloud shadows reduces the usability of 
the Landsat image which makes it difficult for any kind of remote sensing 
applications. For coarse resolution images, such as from the Advanced Very 
High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging 
Spectroradiometer (MODIS), there are many mature operational algorithms 
for detecting clouds and cloud shadows (Derrien et  al., 1993; Ackerman 
et al., 1998). However, for moderate resolution satellites, like Landsat, there 
were no algorithms that could provide cloud and cloud shadow masks at 
the pixel level. This is not surprising because Landsat images were not 
affordable, each of which previously cost more than 400 U.S. dollars per 
image. Even when cloudy Landsat images are used, most of the time only 
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a small number of images are needed, and manual interpretation of clouds 
and their shadows in the images is feasible. However, when these financial 
constraints were lifted (Woodcock et al., 2008), an unprecedented demand 
arose for automatically processing a massive number of Landsat images for 
time series analysis. Manual interpretation of cloud and cloud shadow was 
no longer acceptable.

1.2 Landsat Data and Reference Masks

1.2.1 Landsat Data

Since 1972, Landsat satellites have provided a continuous Earth observation 
data record. Landsats 1–5 carried the Multispectral Scanner System (MSS) 
sensor with 60-meter spatial resolution. The MSS only collected images with 
four spectral bands, including green, red, and two Near InfraRed (NIR) 
bands (Table 1.1). Note that the Landsat 3 MSS also included a Thermal 
Infrared (TIR) band, but failed shortly after launch. The fewer bands result 
in known difficulties in detecting clouds and cloud shadows (Braaten et al., 
2015). However, the MSS images are still crucial for LTS related analyses 
(Pflugmacher et al., 2012). Since the launch of Landsat 4 in 1982, the Thematic 
Mapper (TM) has provided more spectral information at 30-meter spatial 
resolution (Table 1.1). The TM sensor was also carried on Landsat 5, which 
was launched on March 1, 1984, and functioned for over 28 years until 2012. 
Landsat 7, carrying the Enhanced Thematic Mapper Plus (ETM+), was 
launched on April 15, 1999 (Table 1.1). This instrument also has a 30-meter 
spatial resolution and improved radiometric and geometric calibration 
accuracies, but the Scan Line Corrector (SLC) has failed since May 31, 2003. 
Both TM and ETM+ have a TIR band at a spatial resolution of 120-meter 
and 60-meter, respectively. Landsat 8 was launched on February 11, 2013. 
It has two sensors: Operational Land Imager (OLI) and Thermal Infrared 
Sensor (TIRS) (Table 1.1). The OLI instrument provides 30-meter resolution 
optical data, while TIRS provides 100-meter resolution TIR data. Note that 
the TIRS has a shorter design life compared to the OLI. Additionally, the new 
OLI added the new blue band (Band 1: 0.435–0.451 µm) and the cirrus band 
(Band 9: 1.363–1.384 µm) with 30-meter spatial resolution.

Although each Landsat satellite can cover global land every 16 days, many 
of the observations are inevitably impacted by clouds and cloud shadows. 
Figure 1.1 illustrates mean global cloud cover calculated based on all available 
Landsat 8 daytime images acquired between September 2013 and August 
2017. The cloud cover information for each Landsat Path/Row is calculated 
based on the metadata of Landsat 8 images downloaded from the USGS 
Landsat Bulk Metadata Service (https://landsat.usgs.gov/landsat-bulk-
metadata-service), which is derived based on an algorithm called Fmask 

https://landsat.usgs.gov/landsat-bulk-metadata-service
https://landsat.usgs.gov/landsat-bulk-metadata-service
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(Zhu and Woodcock, 2012; Zhu et al., 2015). Extremely high cloud cover is 
observed in tropical rainforest regions, while for arid places, such as desert 
or dryland regions, cloud cover is relatively low. The mean global cloud cover 
contained in the Landsat images is approximately 41.59%, which means that 
clouds impact almost half of the Landsat observations.

TABLE 1.1

Landsat 1–5 MSS, Landsat 4–5 TM, Landsat 7 ETM+ and Landsat 8 OLI Sensor 
Characteristics

Landsat 1–5
MSS Bands (µm)

Landsat 4–5
TM Bands (µm)

Landsat 7
ETM+ Bands (µm)

Landsat 8
OLI/TIRS Bands (µm)

Band 1 (0.45–0.52) Band 1 (0.45–0.52) Band 1 (0.435–0.451)
Band 4 (0.50–0.60) Band 2 (0.52–0.60) Band 2 (0.52–0.60) Band 2 (0.452–0.512)
Band 5 (0.60–0.70) Band 3 (0.63–0.69) Band 3 (0.63–0.69) Band 3 (0.533–0.590)
Band 6 (0.70–0.80)
Band 7 (0.80–1.10)

Band 4 (0.76–0.90) Band 4 (0.77–0.90) Band 4 (0.636–0.673)

Band 5 (1.55–1.75) Band 5 (1.55–1.75) Band 5 (0.851–0.879)
Band 8 (10.40–12.50)
Landsat 3 onlya

Band 6 (10.40–12.50) Band 6 (10.40–12.50) Band 6 (1.566–1.651)

Band 7 (2.08–2.35) Band 7 (2.09–2.35) Band 7 (2.107–2.294)
Band 8 (0.52–0.90) Band 8 (0.503–0.676)

Band 9 (1.363–1.384)
Band 10 (10.60–11.19)
Band 11 (11.50–12.51)

a Indicates that the thermal band of the Landsat 3 MSS was unsuccessful and not available.

Mean cloud cover percentage for each scene (%)
0–20 21–40 41–60 61–80 81–100 No data

FIGURE 1.1
Mean global cloud cover percentage calculated based on all available Landsat 8 images acquired 
between September 2013 and August 2017. A total of 966,708 Landsat 8 images are used. The 
mean global cloud cover percentage from all Landsat 8 observations is 41.59%.
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1.2.2 Manual Masks of Landsat Cloud and Cloud Shadow

Manually interpreted cloud and cloud shadow masks are the most important 
data source for developing and/or validating the cloud and cloud shadow 
detection algorithms (Irish et al., 2006; Zhu and Woodcock, 2012; Hughes 
and Hayes, 2014; Foga et  al., 2017; Qiu et  al., 2017). At present, there are 
three publicly available, manually interpreted cloud and cloud shadow 
masks derived from Landsat images (Table 1.2), including “L7 Irish” masks 
for Landsat 7 data (USGS, 2016a), “L8 SPARCS” masks for Landsat 8 data 
(USGS, 2016b), and “L8 Biome” masks for Landsat 8 data (USGS, 2016c). These 
masks are manually interpreted based on Landsat images randomly selected 
from different locations, which cover a variety of land cover types, and the 
cloud cover percentage within each manual mask also varies substantially. 
The “L7 Irish” manual masks were first created to systematically cover the 
global environments and different cloud conditions (Irish et al., 2006). The 
“L7 Irish” masks were produced based on Landsat 7 ETM+ images by 
visual interpretation of full resolution images with different Landsat band 
combinations, and their average error was estimated at approximately 7% 
(Oreopoulos et  al., 2011). The “L8 SPARCS” manual masks were created 
manually from Landsat 8 OLI images by Hughes and Hayes (2014), which 
was used to validate Spatial Procedures for Automated Removal of Cloud 
and Shadow (SPARCS) algorithm. Note that those manual cloud and cloud 
shadow masks are provided at a 3 km by 3 km Landsat subset (1000 × 1000 
30-meter pixels), with around 4% of pixels being ambiguous (Foga et al., 2017). 
The manual cloud and cloud shadow masks in “L8 Biome” are designed for 
Landsat 8 OLI/TIRS images, which were randomly selected from different 
locations around the world using a biome-based stratified sampling approach. 
Their corresponding cloud and cloud shadow masks were produced by 
multiple visual criteria (such as brightness, shape, and texture) with various 
band combinations by a single analyst (Foga et al., 2017). This new dataset 
achieved better accuracy than the “L7 Irish,” due to the multiple visual 
criteria it used (Foga et al., 2017).

TABLE 1.2

Manual Cloud and Cloud Shadow Masks Derived from Landsat Images

Name Sensor

Number 
of 

Images

Date Range

Error ReferenceStart End

L7 Irish ETM+ 
(SLC on)

206 (45) 06/06/2000 12/30/2001 7.00% USGS (2016a)

L8 SPARCS OLI 80 (80) 05/12/2013 11/02/2014 4.00% USGS (2016b)
L8 Biome OLI 96 (33) 04/13/2013 11/05/2014 Less than 

7.00%
USGS (2016c)

Note that the all images contain manual cloud masks. The numbers in the brackets indicate the 
number of cloud shadow masks for each dataset.
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1.3  Cloud and Cloud Shadow Detection Based 
on a Single-Date Landsat Image

Recently, many cloud and cloud shadow detection algorithms have been 
developed for Landsat images (Table 1.3). Among them, some were proposed 
by using a single-date Landsat image (hereafter single-date algorithms), and 
we can classify these single-date algorithms into two categories: physical-
rules-based and machine-learning-based algorithms (Table 1.3).

1.3.1 Physical-Rules-Based Cloud and Cloud Shadow Detection

1.3.1.1 Physical-Rules-Based Cloud Detection Algorithms

The physical-rules-based algorithms detect clouds by identifying their 
physical characteristics of clouds, that are “bright”, “white”, “cold”, and 
“high” (Irish, 2000; Zhu et al., 2015). Compared to other land cover types, the 
reflectance of cloud is much higher in almost all wavelengths, which makes 
clouds look “bright”. Therefore, we can use some simple thresholds in the 
spectral bands to exclude clear sky pixels that are not bright enough. Clouds 
are “white” due to the similar reflectance in all wavelengths, particularly 
in the visible bands. In this case, some indices such as “whiteness” (Zhu 
and Woodcock, 2012), Normalized Difference Vegetation Index (NDVI), and 
Normalized Difference Snow Index (NDSI) can be used to separate clouds 
from clear sky pixels that are not white enough. Moreover, clouds are “cold” 
because they are usually high in the air, and the temperature of clouds 
follows the environmental lapse rate—the higher the clouds, the colder the 
temperature. This characteristic can be successfully captured by the thermal 
band from Landsat TM, ETM+, and TIRS instruments, which can further 
separate clouds from similar bright and white land surfaces (e.g., barren sand, 
soil, rock, snow/ice, etc.). Additionally, as clouds are usually “high” in the 
sky, the path for water vapor over clouds is much shorter than that for places 
without clouds. Therefore, the water vapor absorption band (or the cirrus 
band) is especially helpful in identifying higher altitude clouds.

Most of the algorithms are developed for Landsat TM and ETM+ images. 
Historically, the Automated Cloud Cover Assessment (ACCA) was used to 
provide cloud cover percentage in Landsat TM and ETM+ images (Irish, 2000; 
Irish et al., 2006). With several spectral filters, ACCA works well for estimating 
a cloud cover score for each image but is not sufficiently precise in identifying 
the locations and boundaries of clouds (Zhu and Woodcock, 2012). Besides, 
ACCA fails to identify warm cirrus clouds and may misidentify snow/ice 
as clouds, mainly because the static thresholds in ACCA are insufficient to 
capture the various kinds of clouds and the variety of land surface types. 
To better distinguish cloud from snow/ice, Choi and Bindschadler (2004) 
used the cloud and cloud shadow geometry matching approach iteratively 
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to determine the optimal threshold of NDSI for each Landsat image in cloud 
detection. This approach works well over ice sheets, but it is time-consuming 
and only works on the surface of ice sheets. Vermote and Saleous (2007) 
proposed a cloud detection algorithm for Landsat TM and ETM+ images, 
and the detection results are provided as one of the internal products in 
the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 
atmosphere correction software. This algorithm needs surface temperature 
from the National Centers for Environmental Prediction (NCEP) as ancillary 
data to generate a surface temperature reference layer for cloud detection. 
Huang et  al. (2010) constructed a spectral temperature space to identify 
clouds in Landsat image using clear sky forest pixels as a reference. This 
method works well over forest areas but has not been fully tested for non-
forest areas. By revisiting the Luo Trishchenko Khlopenkov (LTK) scene 
identification algorithm initially developed for the MODIS image (Luo et al., 
2008), Oreopoulos et al. (2011) modified this algorithm to detect clouds in 
Landsat 7 ETM+ data using simple thresholds derived for the blue, red, NIR, 
and Short-Wave Infrared (SWIR) bands (no thermal band). Recently, Zhu 
and Woodcock (2012) developed the Fmask (Function of mask) algorithm 
that detects cloud by using a scene-based threshold. This method is suitable 
for the Landsats 4–8 data and can generate a cloud probability layer. Users 
can adjust the threshold of cloud probability to determine cloud masks. The 
default threshold (global optimal) is 22.5%. If large omissions are found, a 
smaller threshold (e.g., 12.5%) is recommended, and if large commissions are 
observed, a higher threshold (e.g., 50%) is recommended. This method has 
also been successfully integrated into the Landsat surface reflectance Climate 
Data Record (CDR) and Collection 1 Quality Assessment (QA) band provided 
by the USGS Earth Resources Observation and Science (EROS) Center. In 
the Fmask algorithm, the thermal band is one of the important inputs, as 
it can capture the “cold” character of clouds (Zhu et al., 2015). However, the 
temperature for clear sky pixels can also vary widely due to substantial 
changes in elevation, and this will lead to commission and omission errors 
in cloud detection in mountainous areas. To reduce this issue, Qiu et al. (2017) 
provided a Mountainous Fmask (MFmask) algorithm that normalizes the 
thermal band with Digital Elevation Models (DEMs) based on a simple linear 
temperature-elevation model.

There are also algorithms explicitly designed for Landsat 8 images, many of 
which take advantage of the new blue and cirrus bands equipped in Landsat 
OLI. Wilson and Oreopoulos (2013) further modified the aforementioned LTK 
algorithm by including the cirrus band to detect cloud better. Zhu et al. (2015) 
also designed a cloud detection algorithm for Landsat 8 images by calculating 
a thin cloud probability layer from the cirrus band, and achieved better 
accuracy than the Fmask algorithm designed initially for TM and ETM+ 
images. Vermote et al. (2016) proposed a new cloud detection algorithm for 
Landsat 8, which used the inversion “residual” from the two blue bands and 
the cirrus band reflectance. To minimize the influences of cloud detection 
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from mixed pixels, complex surface structures, and atmospheric factors, 
Sun et al. (2016) presented a Universal Dynamic Threshold Cloud Detection 
Algorithm (UDTCDA) for Landsat 8 OLI images, but only the blue, green, red, 
NIR, and SWIR bands were used. The dynamic threshold in this method was 
determined based on MODIS monthly surface reflectance database, which 
was established based on the long-time series of MODIS 8-day synthetic 
surface reflectance products.

Very few algorithms have been designed for the Landsat MSS image, due to 
the limited number of spectral bands within the MSS sensor. To address this 
issue, Braaten et al. (2015) proposed a simple and automated cloud detection 
algorithm relying on green band brightness and the normalized difference 
between the green and red bands and achieved comparable accuracies to the 
Fmask algorithm.

1.3.1.2 Physical-Rules-Based Cloud Shadow Detection Algorithms

Detecting cloud shadows for Landsat images is more difficult than detecting 
clouds due to the spectral similarity of cloud shadows and dark surfaces. 
Cloud shadows are usually detected based on physical rules derived from 
the cloud shadow geometry.

Previously, the cloud shadow detection algorithms were developed 
based on simple spectral tests according to the dark features. However, it 
is difficult to directly use thresholds to determine cloud shadows because 
their spectral signatures are very similar to other dark surfaces (e.g., terrain 
shadows, wetlands, dark urban, etc.). Fortunately, the geometry-based cloud 
shadow detection has shown relatively good results. The geometry-based 
cloud shadow detection approach is based on the projection of cloud object 
onto the local plane of the Earth with respect to a direction of incoming 
solar radiation (Berendes et  al., 1992; Le Hégarat-Mascle and André, 
2009; Simpson et al., 2000). The relative positions of the sun, the satellite, 
and the cloud can be used to predict the cloud shadow observed in the 
satellite images (Figure 1.2). Methods for detecting cloud shadow based on 
geometry can be grouped into two categories: shape-similarity-match and 
cloud-height-estimation.

The shape-similarity-match approach detects cloud shadow by matching 
cloud shadows with cloud objects, assuming that cloud and cloud shadow 
shape are similar (Gurney, 1982; Berendes et al., 1992). Gurney (1982) assumed 
that a cumulus cloud is approximated in shape by its associated shadow and 
matched cloud shadows with clouds. Berendes et al. (1992) developed a semi-
automated methodology for estimating cumulus cloud base height using 
Landsat data by matching cloud edges with their corresponding shadow 
edges. Due to the absence of the thermal band, Braaten et al. (2015) used cloud 
projection to identify cloud shadow in Landsat MSS image based on their 
geometry information. Although the computation of cloud and cloud shadow 
match is time-consuming and may result in some mismatches, this approach 
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is still an attractive routine, especially for images without the thermal band 
(e.g., Landsat MSS).

The cloud-height-estimation method uses a constant lapse rate to estimate 
cloud top height based on the Brightness Temperature (BT) difference between 
cloud top and the land surface. When the cloud height is known, the clouds 
can be easily projected to predict their associate shadows on the ground 
based on their geometry relationship (Vermote and Saleous, 2007; Huang 
et al., 2010). Vermote and Saleous (2007) detected cloud shadow for Landsat 
data using a geometric determination of shadow based on the cloud mask and 
the estimated altitude of cloud derived from the BT and a conversion factor 
range. Huang et al. (2010) identified cloud shadow based on the dark spectral 
features, the temperature-based cloud height estimation with a constant lapse 
rate, and the solar illumination geometry. Those methods can work well for 
thick clouds but are less ideal for the semitransparent clouds, of which the BT 
will be a mixture of thin cloud and the surface underneath.

Zhu and Woodcock (2012) and Zhu et al. (2015) calculated cloud shadows 
by combining the previous shape-similarity-matching and the cloud-height-
estimation methods, and treated the cloud as a 3D object. This algorithm works 
well for most cases, but it may fail to detect the correct cloud shadows for places 
of large topographic change and terrain shadows. To address those issues, Qiu 
et al. (2017) applied a double-projection method to calculate cloud shadow 
shape and removed terrain shadows using a topographic correction model 
with the aid of DEMs. In addition, this improved Fmask algorithm can estimate 
a more accurate cloud height based on heights estimated from neighboring 
clouds, that also improves the detection of cloud shadow for Landsat images.

North

Scan direction
of the sensor

Cloud shadow

Sensor

Cloud

Sunlight direction

h
ϕS

θS

θυ

Observed cloud

Sun

View direction

FIGURE 1.2
Sun/cloud/shadow geometry in Landsat image. Note that θs is the solar zenith angle, ϕs is the 
solar azimuth angle, θv is the satellite view zenith angle, and h is the cloud height. The position 
of the real cloud may shift from the cloud directly observed by the Landsat sensor.
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1.3.2 Machine-Learning-Based Cloud and Cloud Shadow Detection

Regarding the machine-learning-based algorithms, clouds and/or cloud 
shadows are generally treated as a cover type and are identified using 
a certain classifier trained by previously collected training dataset – 
supervised classification. Lee et al. (1990) combined texture-based features 
in a network to discriminate clouds in Landsat MSS images and achieved an 
overall cloud identification accuracy of 93%. Recognizing that omission and 
commission errors for cloud detection will always occur in large datasets 
for ACCA, Roy et al. (2010) implemented both the ACCA algorithm and a 
classification tree approach to detect clouds using a large number of training 
pixels from a global Landsat Level 1G database. Potapov et al. (2011) also 
manually selected lots of cloud pixels as training data based on 21 Landsat 
images from different years and different regions and built a single tree 
model for cloud type to classify the clouds. Due to the possible loss of the 
thermal band on Landsat 8, Scaramuzza et al. (2012) expanded the ACCA 
pass-1 algorithm without the use of the thermal band, identifying clouds for 
Landsat 8 through a statistical classifier C5.0 (a classification tree) based on 
many randomly sampled pixels from a series of training images. Hughes and 
Hayes (2014) also explored the inclusion of spatial information as an input to 
a neural network classifier on identifying and classifying clouds for Landsat 
images. Zhou et al. (2016) utilized the traditional threshold to obtain a coarse 
cloud mask and then used the Support Vector Machine (SVM) classifier to 
detect clouds in Landsat 8 images. Though all these investigations pointed 
out the usefulness of machine-learning-based methods in cloud detection, 
most require a certain level of knowledge of cloud or surface conditions 
within the images (as training data) and commonly fail to detect clouds for 
certain unique conditions (Huang et al. 2010). Additionally, cloud shadow 
in Landsat image can also be detected using the machine-learning-based 
methods (Potapov et  al., 2011; Hughes and Hayes, 2014). This method, 
however, heavily relies on the training dataset and has substantial omission 
or commission errors (Hughes and Hayes, 2014).

1.4  Cloud and Cloud Shadow Detection Based 
on Multitemporal Landsat Images

In addition to the single-date algorithm, cloud and cloud shadow detection 
algorithms based on multitemporal Landsat images have also been developed 
(hereafter multitemporal algorithm). Compared to the spectral or spatial 
features derived from a single-date Landsat image, multitemporal Landsat 
images can provide extra-temporal information in cloud and cloud shadow 
detection, and are reported to produce better cloud and cloud shadow masks 
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(Table 1.3). The basic idea of these algorithms is that clouds and cloud shadows 
can be easily detected by comparing an observed image with a clear sky 
reference (image differencing), as the presence of clouds and cloud shadows 
will result in sudden changes of Landsat reflectance (Wang et al., 1999; Jin 
et al., 2013).

1.4.1 Cloud Detection Based on Multitemporal Landsat Images

For a long time, multitemporal cloud detection algorithms were only based on 
two-date or multi-date Landsat images. Early on, Wang et al. (1999) proposed 
the use of two-date Landsat TM images to find clouds by image differencing. 
This proposed method first coarsely finds the clouds for the two Landsat TM 
images by setting a histogram-derived threshold for the brightness values, 
and then uses another static threshold for the absolute brightness difference 
between the two images to further ensure reliable cloud detection. Jin et al. 
(2013) identified clouds by incorporating Landsat blue and thermal bands 
from two-date images. Based on two Landsat images that have no overlapping 
clouds, this method first selected the relaxed clouds by differencing the blue 
bands from the two images and then produced the restricted clouds by 
eliminating some commission pixels with relatively low spectral values in 
the SWIR band and low temperature in the thermal band. The thresholds 
used in this approach were determined by measuring spectral deviation from 
the mean value of the input images. These methods can accurately detect 
cloud for the reported images, but the thresholds may not be transferable to 
other images. To avoid confusion between bright surfaces and haze/cloud, 
Chen et  al. (2015) proposed an Iterative Haze Optimized Transformation 
(IHOT) for improving haze/clouds detection for Landsat images with the 
help of a corresponding clear image. By integrating an iterative procedure 
of regressions into the HOT (Zhang et al., 2002), the reflectance difference 
between hazy and clear images, and reflectance of hazy and clear images, 
the land surface information can be removed. The IHOT result is derived 
to characterize the haze contamination on Landsat images spatially. These 
proposed approaches are practical and straightforward only using two-date 
or multi-date Landsat images but heavily dependent on the quality and 
availability of reference images. Besides, these approaches may not work well 
if extensive land cover changes occurred between the acquisition dates of the 
reference and cloudy images.

With free and open access to the Landsat archive, time series analysis 
with Landsat images became possible, providing a new way to detect clouds 
based on higher frequency Landsat observations. The LTS itself can be 
used for detecting clouds. Goodwin et al. (2013) used LTS from TM/ETM+ 
to detect clouds. By using the minimum and median values of the blue 
band as a reference, this algorithm can produce better cloud masks across 
Queensland compared to Fmask (Zhu and Woodcock, 2012). However, it 
has not yet been tested in environments with different soils, vegetation 
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cover, and structure or areas with snow/ice cover (Goodwin et al., 2013). 
Specifically designed for monitoring land cover change, an algorithm called 
Tmask (multitemporal mask) has been developed for automated masking of 
cloud and snow for LTS (Zhu and Woodcock, 2014). This method estimated 
time series models for each pixel based on “clear-sky LTS” previously 
filtered by the Fmask algorithm. By using a robust fitting approach, the 
cloud observations that are missed by Fmask will have minimal impacts on 
the estimation of the time series models. By comparing the model estimates 
with actual Landsat observations for the green, NIR, and SWIR bands, 
we will be able to detect any remaining cloud observations for the entire 
stack of Landsat images. In addition to the Landsat images, there are also 
algorithms developed for Landsat-like data, such as VENµS and Sentinel-2. 
Hagolle et al. (2010) developed the Multi-Temporal Cloud Detection (MTCD) 
method that detects sudden increases of reflectance in the blue band on a 
pixel-by-pixel basis using time series observations and tested the linear 
correlation of pixel neighborhoods taken from pairs of images acquired 
successively. The MTCD method provides better discrimination of cloudy 
and clear sky pixels than the ACCA method for Landsat images. However, it 
requires satellite data with high revisit frequency and sequential processing 
of the data.

1.4.2 Cloud Shadow Detection Based on Multitemporal Landsat Images

Most cloud shadow detection algorithms using multitemporal Landsat 
images assume that the presence of cloud shadows will lead to darker, colder, 
and smoother features than the regular land surface (Irish, 2000; Le Hégarat-
Mascle and André, 2009). Wang et al. (1999) presented a wavelet transform 
approach to detect cloud shadows for two Landsat TM images automatically. 
Considering that the brightness changes of the cloud shadow-obscured 
regions are much smoother than the regions with no shadows, the absolute 
wavelet coefficients corresponding to cloud shadows decrease much greater 
amount than those of other regions. Thus, a relative contrast difference for 
the added result of the wavelet transform outputs was directly used to detect 
cloud shadow for the two Landsat images with a static threshold. Different 
from this complicated approach, Jin et al. (2013) detected the cloud shadows 
simply by differencing the SWIR and the thermal bands from two-date 
Landsat images and employed the geometric relationship between clouds 
and their corresponding shadows to reduce false positive errors. Zhu and 
Woodcock (2014) also identified cloud shadows for LTS by image differencing. 
The reference values were predicted using a time series model for each pixel. 
Though there are only a few cloud shadow detection approaches using 
multitemporal Landsat images, these methods can provide better results than 
the approaches based on a single-date Landsat image, especially for shadows 
from thin clouds (Zhu and Woodcock, 2014).
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1.5 Discussions

1.5.1 Comparison of Different Algorithms

With so many different cloud and cloud shadow detection algorithms 
available in the literature, it is essential to compare those approaches 
and to provide further guidance on the selection of algorithms for those 
interested in using LTS. A list of most of the automated cloud and cloud 
shadow detection algorithms can be found in Table 1.3. We observe that the 
most widely used detection algorithms are based on a single-date Landsat 
image, probably due to the ease of implementation. Recently, Foga et al. 
(2017) compared the performances of several popular algorithms using 
278 unique cloud validation masks over the entire globe and found that 
the CFmask (Fmask algorithm programmed in C) has the best overall 
accuracy for Landsat data. It should be noted that the methods based on 
multitemporal Landsat images can provide more accurate detection of cloud 
and cloud shadow, which is especially important for time series analysis 
(e.g., forest disturbance, land cover change, etc.) (Goodwin et al., 2013; Zhu 
and Woodcock, 2014).

1.5.2 Challenges

Clouds are easily confused with snow/ice, especially for mountaintop snow/
ice (Selkowitz and Forster, 2015). These kinds of commissions can be reduced 
by the NDSI threshold (Zhu and Woodcock, 2012), verification of clouds with 
their corresponding shadows (Choi and Bindschadler, 2004), temperature 
normalization (Qiu et al., 2017), or composition of temporal pixels in summer 
season (Selkowitz and Forster, 2015). However, it is still difficult to separate 
clouds from snow in some circumstances (e.g., icy clouds).

The cloud shadow detection accuracy is still relatively low. The geometry 
projection of cloud is a good way to detect cloud shadow, but relies heavily on 
the previously identified cloud masks, which have commission or omission 
errors and subsequently result in inaccurate cloud shadows. In addition, the 
cloud shadows are commonly confused with other dark features, such as 
wetlands, dark urban, and terrain shadows. Terrain shadows can be removed 
using the topographic correction model with the aid of DEMs (Jin et al., 2013; 
Braaten et al., 2015; Qiu et al., 2017). The misidentification of cloud shadow 
contributed from other dark features can also be corrected based on the 
contextual information from the clouds’ heights estimated from neighboring 
clouds (Qiu et al., 2017).

The use of multitemporal Landsat images can produce better cloud and 
cloud shadow masks by differencing new observations with reference 
observations. However, this kind of approach may not work well due to the 
range of non-cloud related variations in reflectance, such as the illumination 
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geometry, land surface change, geometric misregistration, and variation 
in radiometry or atmospheric composition (Hagolle et al., 2010; Goodwin 
et  al., 2013; Zhu and Woodcock, 2014). Furthermore, these algorithms are 
computationally expensive compared to cloud and cloud shadow detection 
algorithms based on a single-date Landsat image.

1.5.3 Future Development

1.5.3.1 Spatial Information

When designing cloud and cloud shadow detection algorithms for Landsat 
images, the spectral information and the temporal information have been 
explored extensively, but the information contained in the spatial domain is 
less studied (Gurney, 1982; Martins et al., 2002). We expect that more cloud and 
cloud shadow detection algorithms will focus on the spatial characteristics of 
clouds and their shadows and provide masks at higher accuracies.

1.5.3.2 Temporal Frequency

The approaches based on multitemporal Landsat images can provide more 
accurate cloud and cloud shadow masks, when compared to the single-date 
approaches (Goodwin et al., 2013; Zhu and Woodcock, 2014). In addition to 
Landsat data, other Landsat-like satellites have also been launched, such 
as Sentinel-2A/2B. The integration of multi-source images will allow more 
frequent observations and further improve the detection accuracy. One major 
restriction of the multitemporal cloud and cloud shadow detection algorithms 
is that these algorithms require large amounts of data and computation time. 
However, this will be less an issue with the rapid development of computation 
technology.

1.5.3.3 Haze/Thin Cloud Removal

Compared with thick clouds, thin clouds are transparent, and images 
covered by thin clouds include information from both the atmospheric and 
the ground underneath (Li et  al., 2012). This gives us the opportunity to 
remove the impacts of haze/thin clouds. If the satellite sensor profile and 
the atmospheric properties are known, haze/thin clouds’ impacts can be 
reduced by atmospheric correction (Vermote and Saleous, 2007). However, it 
is difficult to acquire all the atmospheric properties (Liang et al., 2001), and 
atmospheric correction may fail in handling the locally concentrated thin 
clouds (Shen et al., 2014). Methods based on multispectral transformation, 
such as Tasseled Cap (TC) transformation (Richter, 1996), HOT (Zhang 
et al., 2002), and Advanced HOT (AHOT) (Liu et al., 2011), can remove haze/
thin  clouds’  impacts effectively. Besides, haze/thin clouds are generally 
distributed in the low frequency parts of the image, which can be removed 
by using a low-pass filter (Shen et al., 2014), such as Wavelet Analysis (WA) 
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(Du  et  al., 2002) and Homomorphic Filter (HF) (Fan and Zhang, 2011). 
While many haze/thin cloud removal methods are available, there are still 
difficulties in automated identification of haze/thin clouds using current 
cloud detection algorithms. This will hamper the broad applications of haze/
thin cloud removal approaches.

1.6 Conclusion

Clouds and cloud shadows are a pervasive, dynamic, and unavoidable issue 
in Landsat images, and their accurate detection is the fundamental basis 
for analyzing LTS. Many cloud and/or cloud shadow detection algorithms 
have been proposed in the literature. For cloud detection, most approaches 
are based on a single-date Landsat image, which rely on physical-rules or 
machine-learning techniques. With the policy of free and open Landsat 
data, some automated cloud detection methods were developed based on 
multitemporal Landsat images and can achieve better results. For cloud 
shadow detection, the geometry-based approach is widely used in the single-
date algorithms. Meanwhile, by using multitemporal Landsat images, some 
researchers used the image differencing method to better identify cloud 
shadow. In this chapter, we reviewed many automated cloud and cloud 
shadow detection algorithms, which can provide guidance on the selection 
of algorithms for those interested in using LTS.
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